Меню

Машины постоянного тока с последовательным возбуждением это

Способы возбуждения машин постоянного тока

Работа и свойства электрических машин постоянного тока (как генераторов, так и двигателей) в значительной степени зависят от способа возбуждения в них магнитного потока. Действительно, магнитный поток входит множителем как в выражение ЭДС, так и в выражение электромагнитного момента, поэтому необходимо знать, как создается магнитный поток, от каких величин он зависит, как и для какой цели нужно изменять его значение.
Согласно ГОСТов, по способу возбуждения машины постоянного тока классифицируют следующим образом:
а) машины независимого возбуждения, обмотка возбуждения которых питается от постороннего источника электрического тока;
б) машины параллельного возбуждения, обмотка возбуждения которых соединена параллельно с цепью якоря;
в) машины последовательного возбуждения, обмотка возбуждения которых соединена последовательно с цепью якоря;
г) машины смешанного возбуждения, у которых имеются две обмотки возбуждения, одна из которых соединена последовательно с цепью якоря (другая — может быть либо независимой, либо, чаще, параллельной). Если МДС обмоток возбуждения имеют одно направление, то такое их включение называется согласным. Если же МДС обмоток направлены в разные стороны, то включение называется встречным.
Схемы всех четырех типов машин показаны соответственно на рис. 1.
Все эти электрические машины имеют одинаковое устройство и отличаются лишь выполнением обмотки возбуждения (ОВ). Обмотки независимого и параллельного возбуждения изготавливают с большим числом витков, из провода малого сечения, а обмотку последовательного возбуждения — с малым числом витков из провода большого сечения.
Существуют также машины небольшой мощности, магнитное поле у которых создается либо только постоянными магнитами, либо еще и обмотками возбуждения, питаемыми электрическим током. Свойства первых близки к свойствам машин независимого, а вторых — смешанного или независимого возбуждения (в зависимости от способа подключения обмотки возбуждения).

Схемы электрических машин постоянного тока

Рис. 1. Схемы электрических машин постоянного тока независимого (а), параллельного (6), последовательного (в) и смешанного (г)
возбуждений

Во всех машинах на возбуждение расходуется от 0,5 % до 5 % номинальной мощности машины, причем первое значение относится к очень мощным машинам, а второе — к машинам мощностью около 1 кВт.
Как видно из рис. 1, значение тока возбуждения /в машины независимого возбуждения не зависит от тока якоря и определяется напряжением источника питания, причем для регулирования тока /в последовательно в цепь обмотки возбуждения включают резистор.
У машины параллельного возбуждения, согласно закону Ома,
/в = Ur/(RB + Rр), (1)
где RB — сопротивление обмотки возбуждения, a Rp — последовательно с нею включаемого регулировочного резистора.
У машин последовательного возбуждения /в = /я.
Согласно ГОСТ 2582—81, выводы всех обмоток маркируются следующим образом:
Я1 и Я2 — начало и конец обмотки якоря;
С1 и С2 — начало и конец последовательной (сериесной) обмотки возбуждения;
Ш1 и Ш2 — начало и конец параллельной (шунтовой) обмотки возбуждения;
К1 и К2 — начало и конец компенсационной обмотки;
Н1 и Н2 — начало и конец обмотки независимого возбуждения;
Д1 и Д2 — начало и конец обмотки добавочных полюсов.
Возможны случаи, когда машина имеет несколько обмоток одного наименования. В этом случае их начала и концы после буквенных обозначений должны иметь две цифры:
первая указывает порядковый номер обмотки, a вторая,, — начало (1) или конец (2). Например, начало второй параллельной обмотки возбуждения будет иметь обозначение Ш21.

  • Вы здесь:
  • Главная
  • Оборудование
  • Эл. машины
  • Способы возбуждения машин постоянного тока
Читайте также:  Основные средство защит от электрического тока

Источник

Способы возбуждения машин постоянного тока и их классификация

Способы возбуждения машин постоянного тока и их классификацияТок, протекающий в обмотке возбуждения основных полюсов, создает магнитный поток . Электрические машины постоянного тока следует различать по способу возбуждения и схеме включения обмотки возбуждения.

Генераторы постоянного тока могут выполняться с независимым, параллельным, последовательным и смешанным возбуждением. Следует заметить, что теперь применение в качестве источников энергии генераторов постоянного тока очень ограничено.

Обмотка возбуждения генератора постоянного тока с независимым возбуждением получает питание от независимого источника — сети постоянного тока, специального возбудителя , преобразователя и др. (рис. 1, а). Эти генераторы применяются в мощных системах, когда напряжение возбуждения должно быть выбрано отличным от напряжения генератора, в системах регулирования скорости вращения двигателей, которые питаются от генераторов и других источников.

Значение тока возбуждения мощных генераторов составляет 1,0—1,5% от тока генераторов и до десятков процентов для машин мощностью порядка десятков ватт.

Схемы генераторов постоянного тока

Рис. 1. Схемы генераторов постоянного тока: а — с независимым возбуждением; б — с параллельным возбуждением; в — с последовательным возбуждением; г — со смешанным возбуждением П — потребители

У г енератора с параллельным возбуждением обмотка возбуждения включается на напряжение самого генератора (смотрите рис. 1,б). Ток якоря I я равен сумме токов нагрузки I п и тока возбуждения I в: I я = I п + I в

Генераторы выполняются обычно для средних мощностей.

Обмотка возбуждения генератора с последовательным возбуждением включена последовательно в цепь якоря и обтекается током якоря (рис. 1, в). Процесс самовозбуждения генератора протекает очень бурно. Такие генераторы практически не используются. В самом начале развития энергетики применялась система передачи энергии с последовательно включенными генераторами и двигателями последовательного возбуждения.

Генератор со смешанным возбуждением имеет две обмотки возбуждения — параллельную ОВП и последовательную ОВС обычно с согласным включением (рис. 1, г). Параллельная обмотка может быть включена до последовательной («короткий шунт») или после нее («длинный шунт»). МДС последовательной обмотки обычно невелика и рассчитана только на компенсацию падения напряжения в якоре при нагрузке. Такие генераторы теперь также практически не применяются.

Схемы возбуждения двигателей постоянного тока подобны схемам для генераторов. Двигатели постоянного тока большой мощности выполняются обычно с независимым возбуждением . У двигателей параллельного возбуждения обмотка возбуждения получает питание от того же источника энергии, что и двигатель. Обмотка возбуждения включается непосредственно на напряжение источника энергии, чтобы не сказывалось влияние падения напряжения в пусковом сопротивлении (рис. 2).

Схема двигателя с параллельным возбуждением

Рис. 2. Схема двигателя постоянного тока с параллельным возбуждением

Ток сети Ic составляется из тока якоря I я и тока возбуждения I в.

Схема двигателя последовательного возбуждения подобна схеме на рис. 1, в. Благодаря последовательной обмотке вращающий момент при нагрузке возрастает больше, чем у двигателей параллельного возбуждения, при этом скорость вращения уменьшается. Это свойство двигателей определяет их широкое применение в приводах электровозной тяги: в магистральных электровозах, городском транспорте и др. Падение напряжения в обмотке возбуждения при номинальном токе составляет единицы процентов от номинального напряжения.

Читайте также:  Один из полюсов источника тока 5 букв

Двигатели смешанного возбуждения из-за наличия последовательной обмотки в некоторой мере имеют свойства двигателей последовательного возбуждения. В настоящее время они практически не применяются. Двигатели параллельного возбуждения иногда выполняются со стабилизирующей (последовательной) обмоткой, включаемой согласно с параллельной обмоткой возбуждения, для обеспечения более спокойной работы при пиках нагрузки. МДС такой стабилизирующей обмотки невелика — единицы процентов от основной МДС.

Источник

Двигатель последовательного возбуждения

date image2015-05-26
views image17060

facebook icon vkontakte icon twitter icon odnoklasniki icon

Рис. 11

В двигателях последовательного возбуждения обмотка возбуждения включается последовательно с обмоткой якоря (рис. 11). Ток возбуждения двигателя здесь равен току якоря, что придает этим двигателям особые свойства.

Для двигателей последовательного возбуждения недопустим режим холостого хода. При отсутствии нагрузки на валу ток в якоре и создаваемый им магнитный поток будут небольшими и, как видно из равенства, частота вращения якоря достигает чрезмерно больших значений, что ведет к «разносу» двигателя. Поэтому пуск и работа двигателя без нагрузки или с нагрузкой менее 25% от номинальной недопустимы.

При небольших нагрузках , когда магнитная цепь машины не насыщена ( ), электромагнитный момент пропорционален квадрату тока якоря.

В силу этого двигатель последовательного возбуждения имеет большой пусковой момент и хорошо справляется с тяжелыми условиями пуска.

С увеличением нагрузки магнитная цепь машины насыщается, и пропорциональность между и нарушается. При насыщении магнитной цепи поток практически постоянен, поэтому момент становится прямо пропорциональным току якоря.

С ростом момента нагрузки на валу ток двигателя и магнитный поток увеличиваются, а частота вращения уменьшается по закону, близкому к гиперболическому, что видно из уравнения (6).

При значительных нагрузках, когда магнитная цепь машины насыщается, магнитный поток практически остается неизменным, и естественная механическая характеристика становится почти прямолинейной (рис.12, кривая 1). Такая механическая характеристика называется мягкой.

При введении пуско-регулировочного реостата в цепь якоря механическая характеристика смещается в область меньших скоростей (рис.12, кривая 2) и называется искусственной реостатной характеристикой.

Рис. 12

Регулирование частоты вращения двигателя последовательного возбуждения возможно тремя способами: изменением напряжения на якоре, сопротивления цепи якоря и магнитного потока. При этом регулирование частоты вращения изменением сопротивления цепи якоря производится так же, как и в двигателе параллельного возбуждения. Для регулирования частоты вращения изменением магнитного потока параллельно обмотке возбуждения подключается реостат (см. рис. 11),

При уменьшении сопротивления реостата его ток увеличивается, а ток возбуждения уменьшается по формуле (8). Это приводит к уменьшению магнитного потока и росту частоты вращения (см. формулу 6).

Уменьшение сопротивления реостата сопровождается уменьшением тока возбуждения, а значит, уменьшением магнитного потока и ростом частоты вращения. Механическая характеристика, соответствующая ослабленному магнитному потоку, изображена на рис. 12, кривая 3.

Рис. 13

На рис. 13 представлены рабочие характеристики двигателя последовательного возбуждения.

Пунктирные части характеристик относятся к тем нагрузкам, при которых не может быть допущена работа двигателя вследствие большой частоты вращения.

Двигатели постоянного тока с последовательным возбуждением применяются как тяговые на железнодорожном транспорте (электропоезда), в городском электрическом транспорте (трамваи, поезда метро) и в подъемно-транспортных механизмах.

Читайте также:  Принципиальная схема подключения трехфазного тока

Источник



Возбуждение двигателя постоянного тока. Схемы возбуждения.

Возбуждение двигателя постоянного тока является отличительной особенностью таких двигателей. От типа возбуждения зависят механические характеристики электрических машин постоянного тока. Возбуждение может быть параллельным последовательным смешанным и независимым. Тип возбуждения означает, в какой последовательности включены обмотки якоря и ротора.

При параллельном возбуждении обмотки якоря и ротора включаются параллельно друг другу к одному источнику тока. Так как у обмотки возбуждения больше витков чем у якорной то и ток в ней течет незначительный. В цепи, как обмотки ротора, так и обмотки якоря могут включаться регулировочные сопротивления.

Обмотка возбуждения может подключаться и к отдельному источнику тока. В этом случае возбуждение будет называться независимым. У такого двигателя характеристики будут схожи с двигателем, в котором применяется постоянный магнит. Скорость вращения двигателя с независимым возбуждением, как и у двигателя с параллельным возбуждением зависит от тока якоря и основного магнитного потока. Основной магнитный поток создается обмоткой ротора.

Скорость вращения можно регулировать с помощью реостата включенного в цепь якоря изменяя тем самым ток в нем. Также можно регулировать ток возбуждения, но здесь нужно быть осторожным. Так как при его чрезмерном уменьшении или полном отсутствии в результате обрыва питающего провода ток в якоре может возрасти до опасных значений.

Также при малой нагрузке на валу или в режиме холостого хода скорость вращения может настолько увеличится, что может привести к механическому разрушению двигателя.

Если обмотка возбуждения включена последовательно с якорной, то такое возбуждение называется последовательным. При этом через якорь и обмотку возбуждения протекает один и тот же ток. Таким образом, магнитный поток изменяется с изменением нагрузки двигателя. А следовательно скорость двигателя будет зависеть от нагрузки.

Двигатели с таким возбуждением нельзя запускать на холостом ходу либо с небольшой нагрузкой на вал. Их применяют в том случае если, требуется большой пусковой момент или способность выдерживать кратковременные перегрузки.

При смешанном возбуждении используются двигатели, у которых на каждом полюсе есть по две обмотки. Их можно включить так чтобы магнитные потоки как складывались, так и вычитались.

В зависимости от того как соотносятся магнитные потоки двигатель с таким возбуждением может работать как двигатель с последовательным так и двигатель с параллельным возбуждением. Все зависит от ситуации, если нужен большой стартовый момент, такая машина работает в режиме согласного включения обмоток. Если же необходима постоянная скорость вращения, при динамически изменяющейся нагрузке применяют встречное включение обмоток.

В машинах постоянного тока можно изменять направление движения ротора. Для этого необходимо изменить направление тока в одной из обмоток. Якорной либо возбуждения. Изменением полярности направление вращения двигателя можно добиться только в двигателе с независимым возбуждением, или в котором используется постоянный магнит. В других схемах включения нужно переключать одну из обмоток.

Стартовый ток в машине постоянного тока достаточно велик, поэтому ее следует запускать с добавочным реостатом, чтобы избежать повреждения обмоток.

Источник