Меню

Магнитные поля синхронного генератора переменного тока

Как устроены генераторы постоянного и переменного тока

Термин «генерация» в электротехнику пришел из латинского языка. Он обозначает «рождение». Применительно к энергетике можно сказать, что генераторами называют технические устройства, занимающиеся выработкой электроэнергии.

При этом надо оговориться, что производить электрический ток можно за счет преобразования различных видов энергии, например:

тепловой и других.

Исторически сложилось так, что генераторами называют конструкции, которые преобразуют кинетическую энергию вращения в электричество.

По виду вырабатываемой электроэнергии генераторы бывают:

1. постоянного тока;

Принцип работы простейшего генератора

Физические законы, которые позволяют создавать современные электрические установки для выработки электроэнергии за счет преобразований механической энергии, открыты учеными Эрстедом и Фарадеем.

В конструкции любого генератора реализуется принцип электромагнитной индукции, когда происходит наводка электрического тока в замкнутой рамке за счет пересечения ее вращающимся магнитным полем, которое создается постоянными магнитами в упрощенных моделях бытового использования или обмотками возбуждения на промышленных изделиях повышенных мощностей.

Принцип работы простейшего генератора

При вращении рамки изменяется величина магнитного потока.

Электродвижущая сила, наводимая в витке, зависит от скорости изменения магнитного потока, пронизывающего рамку в замкнутом контуре S, и прямо пропорциональна его значению. Чем быстрее осуществляется вращение ротора, тем выше величина вырабатываемого напряжения.

Для того чтобы создать замкнутый контур и отвести с него электрический ток, потребовалось создать коллектор и щеточный узел, обеспечивающий постоянный контакт между вращающейся рамкой и стационарно расположенной частью схемы.

Принцип работы генератора постоянного тока

За счет конструкции подпружиненных щеток, прижимающихся к коллекторным пластинам, происходит передача электрического тока на выходные клеммы, а с них дальше он поступает в сеть потребителя.

Принцип работы простейшего генератора постоянного тока

При вращении рамки вокруг оси ее левая и правая половинки циклически проходят около южного или северного полюса магнитов. В них каждый раз происходит смена направлений токов на противоположное так, что у каждого полюса они протекают в одну сторону.

Для того чтобы в выходной цепи создавался постоянный ток, на коллекторном узле создано полукольцо для каждой половинки обмотки. Прилегающие к кольцу щетки снимают потенциал только своего знака: положительный или отрицательный.

Поскольку полукольцо вращающейся рамки разомкнуто, то в нем создаются моменты, когда ток достигает максимального значения или отсутствует. Чтобы поддерживать не только направление, но и постоянную величину вырабатываемого напряжения, рамку изготавливают по специально подготовленной технологии:

у нее используют не один виток, а несколько — в зависимости от величины запланированного напряжения;

число рамок не ограничивается одним экземпляром: их стараются сделать достаточным количеством для оптимального поддержания перепадов напряжения на одном уровне.

У генератора постоянного тока обмотки ротора располагают в пазах магнитопровода. Это позволяет сокращать потери наводимого электромагнитного поля.

Конструктивные особенности генераторов постоянного тока

Основными элементами устройства являются:

внешняя силовая рама;

коммутационный узел со щётками.

Конструкция якоря генератора постоянного тока

Корпус изготавливают из стальных сплавов или чугуна для придания механической прочности общей конструкции. Дополнительной задачей корпуса является передача магнитного потока между полюсами.

Полюса магнитов крепят к корпусу шпильками или болтами. На них монтируют обмотку.

Статор , называемый еще ярмом или остовом, изготавливают из ферромагнитных материалов. На нем размещают обмотку катушки возбуждения. Сердечник статора оснащен магнитными полюсами, образующими его магнитное силовое поле.

Ротор имеет синоним: якорь. Его магнитопровод состоит из шихтованных пластин, снижающих образование вихревых токов и повышающих КПД. В пазы сердечника заложены обмотки ротора и/или самовозбуждения.

Коммутационный узел со щетками может иметь разное количество полюсов, но оно всегда кратно двум. Материалом щеток обычно используют графит. Коллекторные пластины изготавливают из меди, как наиболее оптимального металла, подходящего по электрическим свойствам проводимости тока.

Благодаря использованию коммутатора на выходных клеммах генератора постоянного тока образуется сигнал пульсирующего вида.

Выходной сигнал генератора постоянного тока

Основные типы конструкций генераторов постоянного тока

По типу питания обмотки возбуждения различают устройства:

1. с самовозбуждением;

2. работающие на основе независимого включения.

Первые изделия могут:

использовать постоянные магниты;

или работать от внешних источников, например, аккумуляторных батарей, ветряной установки…

Генераторы с независимым включением работают от собственной обмотки, которая может быть подключена:

шунтами или параллельным возбуждением.

Один из вариантов подобного подключения показан на схеме.

Схема генератора постоянного тока с независимым включением

Примером генератора постоянного тока может служить конструкция, которая раньше часто применялась на автомобильной технике. Ее устройство такое же, как у асинхронного двигателя.

Внешний вид автомобильного генератора

Подобные коллекторные конструкции способны работать в режиме двигателя или генератора одновременно. За счет этого они получили распространение в существующих гибридных автомобилях.

Процесс образования якорной реакции

Она возникает в режиме холостого хода при неправильной настройке усилия прижатия щеток, создающее неоптимальный режим их трения. Это может привести к снижению магнитных полей или возникновению пожара из-за повышенного образования искр.

Способами ее снижения являются:

компенсации магнитных полей за счет подключения дополнительных полюсов;

настройка сдвига положения коллекторных щеток.

Преимущества генераторов постоянного тока

отсутствие потерь на гистерезис и образование вихревых токов;

работа в экстремальных условиях;

пониженный вес и маленькие габариты.

Принцип работы простейшего генератора переменного тока

Внутри этой конструкции используются все те же детали, что и у предыдущего аналога:

коллекторный узел со щетками для отвода тока.

Основное отличие заключается в устройстве коллекторного узла, который создан так, что при вращении рамки через щетки постоянно создается контакт со своей половинкой рамки без циклической смены их положения.

За счет этого ток, сменяющийся по законам гармоники в каждой половинке, полностью без изменений передается на щетки и далее через них в схему потребителя.

Принцип работы генератора переменного тока

Естественно, что рамка создана намоткой не из одного витка, а рассчитанного их количества для достижения оптимального напряжения.

Таким образом, принцип работы генераторов постоянного и переменного тока общий, а отличия конструкции заключаются в изготовлении:

коллекторного узла вращающегося ротора;

конфигурации обмоток на роторе.

Простейший генератор переменного тока

Конструктивные особенности промышленных генераторов переменного тока

Рассмотрим основные части промышленного индукционного генератора, у которого ротор получает вращательное движение от рядом расположенной турбины. В конструкцию статора включен электромагнит (хотя магнитное поле может создаваться набором постоянных магнитов) и обмотка ротора с определённым числом витков.

Внутри каждого витка индуктируется электродвижущая сила, которая последовательно складывается в каждом из них и образует на выходных зажимах суммарное значение напряжения, выдаваемого на схему питания подключенных потребителей.

Чтобы повысить на выходе генератора амплитуду ЭДС используют специальную конструкцию магнитной системы, выполненную из двух магнитопроводов за счет применения специальных сортов электротехнической стали в виде шихтованных пластин с пазами. Внутри их смонтированы обмотки.

Схема генератора переменного тока

В корпусе генератора расположен сердечник статора с пазами для размещения обмотки, создающей магнитное поле.

Вращающийся на подшипниках ротор тоже имеет магнитопровод с пазами, внутри которых смонтирована обмотка, получающая индуцируемую ЭДС. Обычно для размещения оси вращения выбирается горизонтальное направление, хотя, встречаются конструкции генераторов с вертикальным расположением и соответствующей конструкцией подшипников.

Между статором и ротором всегда создается зазор, необходимый для обеспечения вращения и исключения заклинивания. Но, в то же время в нем происходит потеря энергии магнитной индукции. Поэтому его стараются делать минимально возможным, оптимально учитывая оба этих требования.

Расположенный на одном валу с ротором возбудитель является электрогенератором постоянного тока, обладающим относительно небольшой мощностью. Его назначение: питать электроэнергией обмотки силового генератора в состоянии независимого возбуждения.

Подобные возбудители применяют чаще всего с конструкциями турбинных или гидравлических электрогенераторов при создании основного либо резервного способа возбуждения.

На картинке промышленного генератора показано расположение коллекторных колец и щеток для съема токов с конструкции вращающегося ротора. Этот узел при работе испытывает постоянные механические и электрические нагрузки. Для их преодоления создается сложная конструкция, которая при эксплуатации требует периодических осмотров и выполнения профилактических мероприятий.

Чтобы снизить создаваемые эксплуатационные затраты применяется другая, альтернативная технология, при которой тоже используется взаимодействие между вращающимися электромагнитными полями. Только на роторе располагают постоянные или электрические магниты, а напряжение снимают со стационарно расположенной обмотки.

При создании подобной схемы такую конструкцию могут называть термином «альтернатор». Она применяется в синхронных генераторах: высокочастотных, автомобильных, на тепловозах и судах, установках электрических станций энергетики для производства электроэнергии.

Особенности синхронных генераторов

Название и отличительный признак действия заключен в создании жесткой связи между частотой переменной электродвижущей силы, наводимой в статорной обмотке «f» и вращением ротора.

Функциональная схема синхронного генератора

В статоре вмонтирована трехфазная обмотка, а на роторе — электромагнит с сердечником и обмоткой возбуждения, запитанной от цепей постоянного тока через щеточный коллекторный узел.

Ротор приводится во вращение от источника механической энергии — приводного двигателя с одинаковой скоростью. Его магнитное поле совершает такое же движение.

В обмотках статора наводятся одинаковые по величине, но сдвинутые на 120 градусов по направлению электродвижущие силы, создающие трехфазную симметричную систему.

При подключении на концы обмоток цепей потребителей в схеме начинают действовать токи фаз, которые образуют магнитное поле, вращающееся точно так же: синхронно.

Форма выходного сигнала наводимой ЭДС зависит только от закона распределения вектора магнитной индукции внутри зазора между полюсами ротора и пластинами статора. Поэтому добиваются создания такой конструкции, когда величина индукции меняется по синусоидальному закону.

Когда зазор имеет постоянную характеристику, то вектор магнитной индукции внутри зазора создается по форме трапеции, как показано на графике линий 1.

Принцип создания синусоидальной формы колебания

Если же форму краев на полюсах исправить на косоугольную с изменением зазора до максимального значения, то можно добиться синусоидальной формы распределения, как показано линией 2. Этим приемом и пользуются на практике.

Схемы возбуждения синхронных генераторов

Магнитодвижущая сила, возникающая на обмотке возбуждения «ОВ» ротора, создает его магнитное поле. Для этого существуют разные конструкции возбудителей постоянного тока, основанные на:

1. контактном методе;

2. бесконтактном способе.

В первом случае используется отдельный генератор, называемый возбудителем «В». Его обмотка возбуждения питается от дополнительного генератора по принципу параллельного возбуждения, именуемого подвозбудителем «ПВ».

Контактная система самовозбуждения синхронного генератора

Все роторы размещаются на общем валу. За счет этого они вращаются совершенно одинаково. Реостаты r1 и r2 служат для регулирования токов в схемах возбудителя и подвозбудителя.

При бесконтактном способе отсутствуют контактные кольца ротора. Прямо на нем монтируют трехфазную обмотку возбудителя. Она синхронно вращается с ротором и передает через совместно вращающийся выпрямитель электрический постоянный ток непосредственно на обмотку возбудителя «В».

Бесконтактная система самовобуждения синхронного генератора

Разновидностями бесконтактной схемы являются:

1. система самовозбуждения от собственной обмотки статора;

2. автоматизированная схема.

При первом методе напряжение от обмоток статора поступает на понижающий трансформатор, а затем — полупроводниковый выпрямитель «ПП», вырабатывающий постоянный ток.

У этого способа первоначальное возбуждение создается за счет явления остаточного магнетизма.

Схема самовозбуждения от обмотки статора

Автоматическая схема создания самовозбуждения включает использование:

трансформатора напряжения ТН;

автоматизированного регулятора возбуждения АВР;

трансформатора тока ТТ;

выпрямительного трансформатора ВТ;

тиристорного преобразователя ТП;

блока защиты БЗ.

Схема автоматического самовозбуждения синхронного генератора

Особенности асинхронных генераторов

Принципиальное отличие этих конструкций состоит в отсутствие жесткой связи между частотами вращения ротора (nr) и индуцируемой в обмотке ЭДС (n). Между ними всегда существует разница, которую называют «скольжением». Ее обозначают латинской буквой «S» и выражают формулой S=(n-nr)/n.

При подключении нагрузки на генератор создается тормозной момент для вращения ротора. Он влияет на частоту вырабатываемой ЭДС, создает отрицательное скольжение.

Конструкцию ротора у асинхронных генераторов изготавливают:

Асинхронные генераторы могут иметь:

1. независимое возбуждение;

В первом случае используется внешний источник переменного напряжения, а во втором — полупроводниковые преобразователи или конденсаторы в первичной, вторичной или обоих видах схем.

Таким образом, генераторы переменного и постоянного тока имеют много общих черт в принципах построения, но отличаются конструктивным исполнением определённых элементов.

Источник

Магнитные поля синхронного генератора переменного тока

МЕНЮ

  • ШДК
  • Статьи
    • Схемы
      • Arduino
      • Управление шаговыми двигателями
      • Металлоискатели
      • разное
      • для Авто
      • разное на микроконтроллерах
      • всё на таймере NE555
      • Конструктор схем
      • Осциллографы
      • Измерительная аппаратура
      • Роботы
      • Световые эффекты,управление светом
      • Термостат
      • Инверторы и преобразователи
      • Защиты от перепадов напряжения
      • Паяльные станции
      • Аудио
      • Дозиметры
      • Часы
      • Выключатели, переключатели,ИК,РФ
      • Таймеры
      • КУБ светодиодный
    • Программаторы
      • PIC microchip
      • AVR ATmega и ATtiny
      • Общее
    • Электрические двигатели
      • машины постоянного тока
      • машины переменного тока
    • Генераторы
      • генератора независимого возбуждения
      • синхронный генератор
    • Авто-инжектор
      • Элементы ЭСУД, описание
    • Законы электротехники
      • Основные законы из ТОЭ и др.
    • Конкурсные работы 2015
    • Конкурсные работы 2014
    • Конкурсный работы 2013
    • Конкурсные работы 2012
  • Скачать
    • Программирование
    • Электрические расчеты
    • Электрические программы
    • Справочник
    • Книги по релейной защите
    • Авто
    • Библиотека электромонтера
    • Журналы
      • Everyday Practical Electronics
      • Радио
      • Радиоаматор
      • Радиолюбитель
      • Радиоконструктор
      • Схемотехника
      • Радио Хобби
      • Радиомир
      • Ремонт и сервис
      • Электрик
      • Elektor Electronics
    • Разное
      • Книги, разные
      • Программы,разные
  • Ссылки
    • Сайты связанные с электричеством
    • Авто сайты
  • Видео
    • Самоделки
    • Обучение Arduino
    • дуга,разряд,пожар.
    • Обучающие видео ролики
    • P-CAD Schematic
    • РОБОТЫ
    • Техническое обслуживание компьютера
    • Изготовление печатных плат
  • Проекты
    • Заказать прошивку
    • Регистрация программистов
    • С миру по байту
  • Информация
    • О сайте
    • Реклама
    • Добавить статью
    • Обратная связь
    • Обмен банерами
  • Электроника из Китая
  • В помощь студенту
    • Электрические машины
    • Эксплуатация релейной защиты
Читайте также:  По двум бесконечно длинным прямым проводникам текут в одном направлении токи

реклама

ВАЖНОЕ

Возбуждение синхронной машины и её магнитные поля. Возбуждение синхронного генератора.

Обмотка возбуждения синхронного генератора (С.Г.) располагается на роторе и получает питание постоянным током от постороннего источника. Она создает основное магнитное поле машины, которое вращается вместе с ротором и замыкается по всему магнитопроводу. В процессе вращения это поле пересекает проводники обмотки статора и индуктирует в них ЭДС Е10.
Для питания обмотки возбуждения мощных С.Г. используются специальные генераторы – возбудители. Если они установлены отдельно, то питание в обмотку возбуждения подается через контактные кольца и щеточный аппарат. Для мощных турбогенераторов возбудители (синхронные генераторы «обращенного типа») навешивают на вал генератора и тогда обмотка возбуждения, получает питание через полупроводниковые выпрями-тели, установленные на валу.
Мощность, затрачиваемая на возбуждение, составляет примерно 0,2 — 5% от номинальной мощности С.Г., причем меньшая величина – для крупных С.Г.
В генераторах средней мощности часто используют систему самовозбуждения – от сети обмотки статора через трансформаторы, полупроводниковые выпрямители и кольца. В очень малых С.Г. иногда используют постоянные магниты, но это не позволяет регулировать величину магнитного потока.

Обмотка возбуждения может быть сосредоточенной (у явнопо-люсных синхронных генераторов) или распределенной (у неявнополюсных С.Г.).

Магнитная цепь С.Г.

Магнитная система С.Г. – это разветвленная магнитная цепь, имеющая 2р параллельных ветвей. При этом магнитный поток, созданный обмоткой возбуждения, замыкается по таким участкам магнитной цепи: воздушный зазор «?» – два раза; зубцовая зона статора hZ1 – два раза; спинка статора L1; зубцовый слой ротора «hZ2» — два раза; спинка ротора – «LОБ». В явнополюсных генераторах на роторе есть полюса ротора «hm» — два раза (вместо зубцового слоя) и крестовина LОБ (вместо спинки ротора).

На рисунке 1 видно, что параллельные ветви магнитной цепи симметричны. Видно также, что основная часть магнитного потока Ф замыкается по всему магнитопроводу и сцеплена как с обмоткой ротора, так и с обмоткой статора. Меньшая часть магнитного потока Фсигма(извените нету символа) замыкается только вокруг обмотки возбуждения, а затем по воздушному зазору не сцепляясь с обмоткой статора. Это магнитный поток рассеяния ротора.

Рисунок 1. Магнитные цепи С.Г.
явнополюсного (а) и неявнополюсного (б) типа.

В этом случае полный магнитный поток Фm равен:

где СИГМАm – коэффициент рассеяния магнитного потока.
МДС обмотки возбуждения на пару полюсов в режиме холостого хода можно определить как сумму составляющих МДС, необходимых на преодоление магнитных сопротивлений в соответствующих участках цепи.

Наибольшим магнитным сопротивлением обладает участок воз-душного зазора, у которого магнитная проницательность µ0 = const постоянна. В представленной формуле wВ – это число последовательно соединенных витков обмотки возбуждения на пару полюсов, а IВО – ток возбуждения в режиме холостого хода.

Сталь магнитопровода с увеличением магнитного потока имеет свойство насыщения, поэтому магнитная характеристика синхронного генератора нелинейна. Эту характеристику как зависимость магнитного потока от тока возбуждения Ф = f(IВ) или Ф = f(FВ) можно построить путем расчета или снять опытным путем. Она имеет вид, показанный на рисунке 2.

Рисунок 2. Магнитная характеристика С.Г.

Обычно С.Г. проектируют так, чтобы при номинальном значении магнитного потока Ф магнитная цепь была насыщена. При этом участок «ав» магнитной характеристики соответствует МДС на преодолении воздушного зазора 2Fсигма, а участок «вс» – на преодоление магнитного сопротивления стали магнитопровода. Тогда отношение можно назвать коэффициентом насыщения магнитопровода в целом.

Холостой ход синхронного генератора

Если цепь обмотки статора разомкнута, то в С.Г. существует только одно магнитное поле — созданное МДС обмотки возбуждения.
Синусоидальное распределение индукции магнитного поля, необходимое для получения синусоидальной ЭДС обмотки статора, обеспечивается:
— в явнополюсных С.Г. формой полюсных наконечников ротора (под серединой полюса зазор меньше, чем под его краями)и скосом пазов статора.
— в неявнополюсных С.Г. – распределением обмотки возбужде-ния по пазам ротора под серединой полюса зазор меньше, чем под его краями и скосом пазов статора.
В многополюсных машинах применяют обмотки статора с дроб-ным числом пазов на полюс и фазу.

Рисунок 3. Обеспечение синусоидальности магнитного
поля возбуждения

Поскольку ЭДС обмотки статора Е10 пропорциональна магнитному потоку Фо, а ток в обмотки возбуждения IВО пропорционален МДС обмотки возбуждения FВО, нетрудно построить зависимость: Е0 = f(IВО) идентичную магнитной характеристике: Ф = f(FВО). Эту зависимость называют характеристикой холостого хода (Х.Х.Х.) С.Г. Она позволяет определять параметры С.Г., строить его векторные диаграммы.
Обычно Х.Х.Х. строят в относительных единицах е0 и iВО, т.е. те-кущее значение величин относят к их номинальным значениям

В этом случае Х.Х.Х. называют нормальной характеристикой. Интересно то, что нормальные Х.Х.Х. практически для всех С.Г. одинаковы. В реальных условиях Х.Х.Х. начинается не из начала координат, а из некоторой точки на оси ординат, которая соответствует остаточной ЭДС е ОСТ., обусловленной остаточным магнитным потоком стали магнитопровода.

Рисунок 4. Характеристика холостого хода в относительных единицах

Принципиальные схемы возбуждения С.Г. с возбуждением а) и с самовозбуждением б) показаны на рисунке 4.

Рисунок 5. Принципиальные схемы возбуждения С.Г.

Магнитное поле С.Г. при нагрузке.

Чтобы нагрузить С.Г. или увеличить его нагрузку, надо уменьшить электрическое сопротивление между зажимами фаз обмотки статора. Тогда по замкнутым цепям фазных обмоток под действием ЭДС обмотки статора потекут токи. Если считать, что эта нагрузка симметрична, то токи фаз создают МДС трехфазной обмотки, которая имеет амплитуду

и вращается по статору с частотой вращения n1, равной частоте вращения ротора. Это значит, что МДС обмотки статора F3Ф и МДС обмотки возбуждения FВ, неподвижная относительно ротора, вращаются с одинаковыми скоростями, т.е. синхронно. Иначе говоря, они неподвижны относительно друг друга и могут взаимодейст-вовать.
В то же время в зависимости от характера нагрузки эти МДС могут быть по-разному ориентированы относительно друг друга, что изменяет характер их взаимодействия и, следовательно, рабочие свойства генератора.
Отметим еще раз, что воздействие МДС обмотки статора F3Ф = Fa на МДС обмотки ротора FВ называется «реакция якоря».
В неявнополюсных генераторах воздушный зазор между ротором и статором является равномерным, поэтому индукция В1, созданная МДС обмотки статора, распределена в пространстве как и МДС F3Ф = Fa синусоидально независимо от положения ротора и обмотки возбуждения.
В явнополюсных генераторах воздушный зазор неравномерен как за счет формы полюсных наконечников, так и за счет междуполюсного пространства, заполненного медью обмотки возбуждения и изоляционными материалами. Поэтому магнитное сопротивление воздушного зазора под полюсными наконечниками значительно меньше, чем в области междуполюсного пространства. Ось полюсов ротора С.Г. называют его продольной осью d — d, а ось междуполюсного пространства – поперечной осью С.Г. q — q.
Это значит, что индукция магнитного поля статора и график её распределения в пространстве зависят от положения волны МДС F3Ф обмотки статора относительно ротора.
Допустим, что амплитуда МДС обмотки статора F3Ф = Fa совпадает с продольной осью машины d — d, а пространственное распределение этой МДС синусоидально. Положим также, что ток возбуждение равен нулю Iво = 0.
Для наглядности изобразим на рисунке линейную развертку этой МДС, из которой видно, что индукция магнитного поля статора в области полюсного наконечника достаточно велика, а в области междуполюсного пространства резко снижается практически до нуля из — за большого сопротивления воздуха.

Рисунок 6. Линейная развертка МДС обмотки статора по продольной оси.

Такое неравномерное распределение индукции с амплитудой В1dmax можно заменить синусоидальным распределением, но с меньшей амплитудой В1d1max.
Если максимальное значение МДС статора F3Ф = Fa совпадает с поперечной осью машины, то картина магнитного поля будет иной, что видно из рисунка линейной развертки МДС машины.

Рисунок 7. Линейная развертка МДС обмотки статора по поперечной оси.

Здесь также величина индукции в районе полюсных наконечни-ков больше, чем в области междуполюсного пространства. И вполне очевидно, что амплитуда основной гармоники индукции поля статора В1d1 по продольной оси больше амплитуды индукции поля В1q1, по поперечной оси. Степень уменьшения индукции В1d1 и В1q1, которое обусловлено неравномерностью воздушного зазора учитывают с помощью коэффициентов:

Они зависят от многих факторов и, в частности, от отношения сигма/тау(извените нету символа) (относительная величина воздушного зазора), от отношения

(коэффициент полюсного перекрытия), где вп – ширина полюсного наконечника, и от других факторов.

Источник

Принцип работы и устройство синхронного генератора переменного тока

Электричество – единственный вид энергии, которую легко можно передать на большие расстояния, а затем преобразовать её в механическую, тепловую или превратить в световое излучение. Саму же электроэнергию также можно получить разными способами: химическим, тепловым, механическим, фотоэлектрическим и др. Но именно механический способ, который основан на применении генераторов, оказался самым эффективным. Среди этих источников электроэнергии широкое применение нашёл синхронный генератор переменного тока.

Практически вся электроэнергия, используемая в быту и на производстве, вырабатывается генераторами этого типа. Они заслуживают того, чтобы более подробно рассмотреть их устройство и разобраться в принципе работы этих удивительных синхронных машин.

Устройство

В конструкции синхронных генераторов используются две основные рабочие детали – вращающийся ротор и неподвижный статор. На валу ротора располагаются постоянные магниты либо обмотки возбуждения. Магниты имеют зубчатую форму, с противоположно направленными полюсами.

Бесщёточные генераторы.

Обмотки статора размещают таким образом, чтобы их сердечники совпадали с выступами магнитных полюсов ротора, или с сердечниками катушек ротора. Количество зубцов магнита, обычно, не превышает 6. При такой конструкции вырабатываемый ток снимается непосредственно с обмоток статоров. Другими словами, статор выступает в роли якоря.

В принципе, постоянные магниты можно расположить на статоре, а рабочие обмотки, в которых будет индуцироваться ЭДС, — на роторе. Работоспособность генератора от этого не изменится, однако потребуются кольца и щётки для снятия напряжения с обмоток якоря, а это, чаще всего, не рационально.

Схематическое изображение бесщеточного генератора без обмоток возбуждения изображено на рис. 1.

Модель генератора с магнитным ротором

Рис. 1. Модель генератора с магнитным ротором

Пояснение:

  • схема устройства;
  • схема расположения магнитных полюсов на якоре. Здесь буквами NS обозначено коаксиальный магнит с полюсами, а литерой R – стальной магнитопровод ротора в виде когтеобразных наконечников.
  • модель генератора в разрезе. Выводы фазных обмоток статора соединены «звездой».

Синхронные машины с индукторами.

Заметим, что постоянные магниты в качестве ротора используются в альтернаторах небольшой мощности. В мощных электрических машинах всегда применяются обмотки индуктора с независимым возбуждением. Независимым источником питания является маломощный генератор постоянного тока, смонтированный на валу синхронного двигателя.

Читайте также:  6 вольтовое реле поворотов постоянного тока для мопеда своими руками

Существуют конструкции синхронных генераторов малой и средней мощности, с самовозбуждающимися обмотками. Для возбуждения индуктора выпрямленный ток фазных обмоток подаётся через щётки на кольца, расположенные на валу статора. Строение такого альтернатора показано на рис. 2.

Строение синхронного генератора средней мощности

Рис. 2. Строение синхронного генератора средней мощности

Обратите внимание на наличие щёток, на которые подаётся питания от независимого источника.

По количеству фаз синхронные генераторы делятся на:

  • однофазные;
  • двухфазные;
  • трёхфазные.

По конструкции ротора можно выделить генераторы с явновыраженными полюсами и с неявновыраженными. В неявнополюсном роторе отсутствуют выступы, а катушки провода якоря спрятаны в пазы статора.

По способу соединения фазных обмоток различают трёхфазные генераторы:

  • соединённые по шестипроводной системе Тесла (не нашли практического применения);
  • «звезда»;
  • «треугольник»;
  • сочетание шести обмоток, соединённых в виде одной «звезды» и «треугольника». Это соединение ещё называют «Славянка».

Самое распространённое соединение – «звезда» с нейтральным проводом.

Принцип работы

Рассмотрим принцип генерации тока на примере контурной рамки, помещённой между магнитными полюсами. (Рис. 3)

Рис. 3. Схема, объясняющая принцип работы генератора

Если заставить рамку вращаться (по направлению стрелок), то она будет пересекать магнитные силовые линии. При этом, по закону электромагнитной индукции, в рамке индуцируется электрический ток, который проявляется при подключении нагрузки к щёткам. Его направление можно определить по правилу буравчика. На схеме направление тока показано чёрными стрелками.

Обратите внимание на то, что на участках рамки ab и cd ток движется в противоположных направлениях. Эти направления меняются при переходе участков рамки от одного полюса к другому полюсу магнита. Если каждый вывод рамки подключить к отдельному кольцу (на рисунке они подключены к коллектору!), то на выходе мы получим переменный ток.

Величина тока пропорциональна скорости вращения ротора. Кроме того, переменный ток характеризуется ещё одним параметром – частотой. Эта величина напрямую зависит от частоты вращения вала.

Частота тока в электросетях строго соблюдается. В России и в ряде других стран она составляет 50 Гц, то есть 50 колебаний в секунду.

Этот параметр довольно легко вычислить из таких соображений: за один оборот рамки (или двухполюсного магнита) происходит одно изменение направления тока. Если вал синхронного генератора делает 1 оборот в секунду, то частота переменного тока составит 1 Гц. Для получения частоты 50 Гц необходимо обеспечить 50 оборотов статора в секунду или 3000 об./мин.

При возрастании числа полюсов заданная частота удерживается путём снижения скорости вращения статора. (обратно пропорциональная зависимость). Так, для четерёхполюсного статора (число полюсов в два раза больше) для поддержания частоты 50 Гц скорость вращения вала необходимо снизить в два раза. Соответственно если используется 6 полюсов, то частота вращения вала должна уменьшиться в три раза – до 1000 об./мин.

Заметим, что в некоторых странах, таких как США, Япония и др. существуют другие стандарты – 60 Гц, а переменный 400 Гц используется, например, в бортовой сети современных самолётов.

Регулирование частоты

Достигнуть требуемых параметров частоты можно 2 путями:

  1. Сконструировать генератор с определённым количеством полюсов электромагнитов.
  2. Обеспечить соответствующую расчётную частоту вращения вала.

Например, в тихоходных гидротурбинах, вращающихся со скоростью 150 об./мин. для регулирования частоты число полюсов синхронных генераторов увеличивают до 40. На дизельных электростанциях, при скоростях вращения 750 об./мин., оптимальное число полюсов – 8.

Регулирование ЭДС

В связи с изменениями параметров активных нагрузок возникает необходимость в выравнивании номинальных напряжений. Несмотря на то, что ЭДС индукции синхронного генератора связана со скоростью вращения ротора, однако, из-за требований по соблюдению стабильной частоты, этим способом нельзя изменять указанный параметр. Но параметры магнитной индукции можно изменить путём снижения или увеличения магнитного потока, который зависит от количества витков обмотки индуктора и величины тока возбуждения.

Регулирование осуществляется путём включения в цепь катушек возбуждения дополнительных реостатов, электронных схем или регулировкой тока генератора-возбудителя (Рис. 4). В случае использования альтернаторов с постоянными магнитами, в таких устройствах напряжение регулируется внешними стабилизаторами.

Схема регулировки напряжения

Рис. 4. Схема регулировки напряжения

Благодаря малому весу и отличным токовым характеристикам синхронные генераторы переменного тока нашли применение во всех современных автомобилях. Поскольку бортовая сеть авто использует постоянный ток, конструкции автомобильных генераторов оборудованы трехфазным выпрямителем. Для выпрямляемых переменных токов частота не имеет значения, а вот напряжение должно быть стабильно. Этого добиваются с помощью внешних электронных устройств. На рисунке 5 представлена электрическая схема подключения генератора к бортовой сети современного автомобиля.

Схема подключения генератора к бортовой сети авто

Рис. 5. Схема подключения генератора к бортовой сети авто

Применение

У синхронных генераторов переменного тока есть одна важная особенность: они поддаются синхронизации с другими подобными электрическими машинами. При этом синхронные скорости и ЭДС параллельно включенных альтернаторов совпадают, а фазовый сдвиг равен нулю. Данное обстоятельство позволяет применять устройства в промышленной энергетике и подключать резервные генераторы при превышении номинальных мощностей в часы пиковых нагрузок.

Трёхфазные тяговые генераторы применяют на тепловозах. Переменные токи для питания двигателей выпрямляются полупроводниковыми устройствами. Сегодня в России уже выпускаются тепловозы на базе асинхронных электродвигателей, не требующих выпрямления тока. В режиме торможения они работают в качестве асинхронных генераторов.

Синхронные генераторы устанавливают на гибридных автомобилях с целью совмещения тяги ДВС и мощности тяговых электродвигателей. Развивая активную мощность при номинальных нагрузках, они позволяют экономить дорогое топливо.

Существует много других сфер применения. Например, мобильные мини-электростанции, бытовые генераторы тока, как однофазный двигатель и т. п.

Источник

Синхронные генераторы. Конструкция синхронных генераторов. Принцип действия синхронного генератора , страница 2

Магнитное поле ротора, созданное постоянным током, подведен­ным на зажимы И1И2 обмотки возбуждения, вращаясь вместе с ротором, пересекает проводники обмотки статора и наводит в ее фазах э. д. с. ЕА, Ев и Ес одинаковой величины и частоты, но сдвинутые по фазе на 120° относительно друг друга. Частота на­веденной э. д. с. пропор­циональна частоте враще­ния ротора.

При подключении к вы­водам С1, С2 и СЗ обмот­ки статора нагрузки (потребителя энергии) Zн в це­пи генератора появляются токи IA, IВ и IС. Таким образом, синхронный гене­ратор, потребляя механиче­скую энергию первичного двигателя, отдает электри­ческую энергию перемен­ного тока.

Э. д. с. фазы обмотки статора определяется вы­ражением

где kwl — обмоточный коэффициент обмотки статора; Ф — вращаю­щийся магнитный поток ротора; w1 — число витков фазы обмотки статора.

Обмотки статора синхронных машин делают распределенными с укороченным шагом, что способствует уменьшению амплитуды высших гармоник в кривой э. д. с, наводимой в обмот­ке статора.

Величина линейной э. д. с. на выходе синхронного генератора Ел зависит от схемы соединения фазных обмоток статора: при со­единении в звезду ЕЛ = E1; при соединении в треугольник Ел = E1.

3.1.4. Магнитное поле синхронного генератора при холостом ходе и при нагрузке. Реакция якоря

Если синхронный генератор работает в режиме холостого хода, то ток в обмотке статора отсутствует и в генераторе действует лишь одна м. д. с, создаваемая током обмотки возбуждения (ротора) FB. Эта м.д.с. создает в магнитной системе генератора магнитный по­ток возбуждения, направленный по оси полюсов ротора и вращаю­щийся вместе с ротором с частотой n1.

При подключении нагрузки ZH в каждой фазе обмотки статора возникает переменный ток I1, который создает м. д. с. якоря (статора) Fa. Если генератор трехфазный, то система токов I1 создает магнитное поле статора Фа, вращающееся в сторону вращения ротора с синхронной частотой n1.

Таким образом, при работе синхронного генератора в режиме нагрузки в нем действуют две м. д. с, которые создают соответст­венно два магнитных поля: возбуждения и якоря (статора).

Рис. 5. Реакция якоря синхронного генератора

Воздействие поля якоря на магнитное поле машины называете реакцией якоря. Влияние реакции якоря на рабочие свойства синхронной машины зависит не только от величины тока нагрузки I1 как это имело место в машинах постоянного тока, но и от характера нагрузки, т. е. от угла сдвига между э. д. с. машины и током статора.

Для выяснения влияния реакции якоря рассмотрим рис. 5.

На рис. 5,а изображен синхронный генератор с явно выраженными полюсами при чисто активной нагрузке. На ста­торе генератора расположена многофазная обмотка. При вращении ротора максимальная э. д. с. E1max наводится в проводниках, нахо­дящихся в рассматриваемый момент времени под серединой полю­сов ротора. Так как ток I1 в этом случае совпадает с E1 по фазе (во времени), то максимум тока I1max будет иметь место в тех же; проводниках обмотки статора. М.д.с. обмотки статора Fa всегда направлена по оси той фазы, в которой в данный момент времени ток максимален. Это значит, что м.д.с. обмотки статора будет направлена перпендикулярно оси полюсов ротора, а следовательно, перпендикулярно м.д. с. возбуждения FB. Так же будет направлен и поток реакции якоря. Таким образом, при чисто активной нагруз­ке реакция якоря (статора) поперечная — поток Фа направлен по оси q q. Поперечная реакция якоря синхронного генератора вы­бывает искажение, магнитного потока и оказывает такое же влия­ние на основное поле машины, как и реакция якоря в генераторе постоянного тока: ослабляет основное поле под набегающим краем полюса и усиливает его под сбегающим краем. Некоторое умень­шение результирующего магнитного потока по сравнению с пото­ком возбуждения вызывается насыщением магнитной системы гене­ратора.

При чисто индуктивной нагрузке (рис.5,б) ток I1 отстает по фазе от Е1 на четверть периода (90°). Это значит, что максимум тока I1max будет не в тех проводниках, в которых в данный момент времени э. д. с. максимальна, а в проводниках, в которых максимум Е1 был па 1 /4 периода раньше. М. д. с. статорной обмотки F а в этом случае будет направлена не по поперечной (q q), а по продольной оси машины (d d), совпадающей с осью полюсов. Причем м. д. с. Fa направлена навстречу м. д. с. Fв и ока­зывает на магнитное поле машины размагничивающее действие. Таким образом, при чисто индуктивной нагрузке реакция якоря (статора) продольная размагничивающая.

При чисто емкостной нагрузке (рис. 5,в) ток якоря

I1 опережает по фазе Е1 на 90°. Это значит, что максимум тока I1max будет не в тех проводниках, в которых в данный момент э. д. с. максимальна F1max, а в проводниках, в которых максимум э. д. с. будет через 1 /4 периода (при повороте ротора на 90°). М. д. с. обмотки статора Fa в этом случае будет направлена по продольной оси в ту же сторону, что и м. д. с. обмотки возбужде­ния Fв. Таким образом, при чисто емкостной нагрузке реакция якоря продольная намагничивающая.

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 267
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 603
  • БГУ 155
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 963
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 120
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1966
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 299
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 408
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 498
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 131
  • ИжГТУ 145
  • КемГППК 171
  • КемГУ 508
  • КГМТУ 270
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2910
  • КрасГАУ 345
  • КрасГМУ 629
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 138
  • КубГУ 109
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 369
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 331
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 637
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 455
  • НИУ МЭИ 640
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 213
  • НУК им. Макарова 543
  • НВ 1001
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1993
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 302
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 120
  • РАНХиГС 190
  • РОАТ МИИТ 608
  • РТА 245
  • РГГМУ 117
  • РГПУ им. Герцена 123
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 123
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 131
  • СПбГАСУ 315
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 146
  • СПбГПУ 1599
  • СПбГТИ (ТУ) 293
  • СПбГТУРП 236
  • СПбГУ 578
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 194
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 379
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1654
  • СибГТУ 946
  • СГУПС 1473
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2424
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 325
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 309
Читайте также:  Пальцы пробивает как током

Полный список ВУЗов

  • О проекте
  • Реклама на сайте
  • Правообладателям
  • Правила
  • Обратная связь

Чтобы распечатать файл, скачайте его (в формате Word).

Источник



Генераторы переменного тока

Генератор — устройство, преобразующее один вид энергии в другой.
В данном случае рассматриваем преобразование механической энергии вращения в электрическую.

Различают два типа таких генераторов. Синхронные и асинхронные.

Синхронный генератор. Принцип действия

Отличительным признаком синхронного генератора является жёсткая связь между частотой f переменной ЭДС, наведённой в обмотке статора, и частотой вращения ротора n , называемой синхронной частотой вращения:

n = f / p

где p – число пар полюсов обмотки статора и ротора.
Обычно частота вращения выражается в об/мин, а частота ЭДС в Герцах (1/сек), тогда для количества оборотов в минуту формула примет вид:

n = 60·f / p

На рис. 1.1 представлена функциональная схема синхронного генератора. На статоре 1 расположена трёхфазная обмотка, принципиально не отличающаяся от аналогичной обмотки асинхронной машины. На роторе расположен электромагнит с обмоткой возбуждения 2, получающей питание постоянным током, как правило, через скользящие контакты, осуществляемые посредством двух контактных колец, расположенных на роторе, и двух неподвижных щёток.
В некоторых случаях в конструкции ротора синхронного генератора вместо электромагнитов могут использоваться постоянные магниты, тогда необходимость в наличии контактов на валу отпадает, но существенно ограничиваются возможности стабилизации выходных напряжений.

Приводным двигателем (ПД), в качестве которого используется турбина, двигатель внутреннего сгорания либо другой источник механической энергии, ротор генератора приводится во вращение с синхронной скоростью. При этом магнитное поле электромагнита ротора также вращается с синхронной скоростью и индуцирует в трёхфазной обмотке статора переменные ЭДС EA , EB и EC , которые будучи одинаковыми по значению и сдвинутыми по фазе относительно друг друга на 1/3 периода (120°), образуют симметричную трёхфазную систему ЭДС.

C подключением нагрузки к зажимам обмотки статора С1, С2 и С3 в фазах обмотки статора появляются токи IA, IB, IC , которые создают вращающееся магнитное поле. Частота вращения этого поля равна частоте вращения ротора генератора. Таким образом, в синхронном генераторе магнитное поле статора и ротор вращаются синхронно. Мгновенное значение ЭДС обмотки статора в рассматриваемом синхронном генераторе

e = 2Blwv = 2πBlwDn

Здесь: B – магнитная индукция в воздушном зазоре между сердечником статора и полюсами ротора, Тл;
l – активная длина одной пазовой стороны обмотки статора, т.е. длина сердечника статора, м;
w – количество витков;
v = πDn – линейная скорость движения полюсов ротора относительно статора, м/с;
D – внутренний диаметр сердечника статора, м.

Формула ЭДС показывает, что при неизменной частоте вращения ротора n форма графика переменной ЭДС обмотки якоря (ста- тора) определяется исключительно законом распределения магнитной индукции B в зазоре между статором и полюсами ротора. Если график магнитной индукции в зазоре представляет собой синусоиду B = Bmax sinα , то ЭДС генератора также будет синусоидальной. В синхронных машинах всегда стремятся получить распределение индукции в зазоре как можно ближе к синусоидальному.

Так, если воздушный зазор δ постоянен (рис. 1.2), то магнитная индукция B в воздушном зазоре распределяется по трапецеидальному закону (график 1). Если же края полюсов ротора «скосить» так, чтобы зазор на краях полюсных наконечников был равен δmax (как это показано на рис. 1.2), то график распределения магнитной индукции в зазоре приблизится к синусоиде (график 2), а, следовательно, и график ЭДС, индуцированной в обмотке генератора, приблизится к синусоиде. Частота ЭДС синхронного генератора f (Гц) пропорциональна синхронной частоте вращения ротора n (об/с)

где p – число пар полюсов.
В рассматриваемом генераторе (см. рис.1.1) два полюса, т.е. p = 1.
Для получения ЭДС промышленной частоты (50 Гц) в таком генераторе ротор необходимо вращать с частотой n = 50 об/с (n = 3000 об/мин).

Способы возбуждения синхронных генераторов

Самым распространенным способом создания основного магнитного потока синхронных генераторов является электромагнитное возбуждение, состоящее в том, что на полюсах ротора располагают обмотку возбуждения, при прохождении по которой постоянного тока, возникает МДС, создающая в генераторе магнитное поле. До последнего времени для питания обмотки возбуждения применялись преимущественно специальные генераторы постоянного тока независимого возбуждения, называемые возбудителями В (рис. 1.3, а). Обмотка возбуждения (ОВ) получает питание от другого генератора (параллельного возбуждения), называемого подвозбудителем (ПВ). Ротор синхронного генератора, возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронного генератора поступает через контактные кольца и щётки. Для регулирования тока возбуждения применяют регулировочные реостаты, включаемые в цепи возбуждения возбудителя r1 и подвозбудителя r2 . В синхронных генераторах средней и большой мощности процесс регулирования тока возбуждения автоматизируют.

В синхронных генераторах получила применение также бесконтактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе. В качестве возбудителя в этом случае применяют обращенный синхронный генератор переменного тока В (рис. 1.3, б). Трехфазная обмотка 2 возбудителя, в которой наводится переменная ЭДС, расположена на роторе и вращается вместе с обмоткой возбуждения синхронного генератора и их электрическое соединение осуществляется через вращающийся выпрямитель 3 непосредственно, без контактных колец и щёток. Питание постоянным током обмотки возбуждения 1 возбудителя В осуществляется от подвозбудителя ПВ – генератора постоянного тока. Отсутствие скользящих контактов в цепи возбуждения синхронного генератора позволяет повысить её эксплуатационную надёжность и увеличить КПД.

В синхронных генераторах, в этом числе гидрогенераторах, получил распространение принцип самовозбуждения (рис. 1.4, а), когда энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупроводниковый преобразователь ПП преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счёт остаточного магнетизма машины.

На рис. 1.4, б представлена структурная схема автоматической системы самовозбуждения синхронного генератора (СГ) с выпрямительным трансформатором (ВТ) и тиристорным преобразователем (ТП), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток подаётся в обмотку возбуждения. Управление тиристорным преобразователем осуществляется посредством автоматического регулятора возбуждения АРВ, на вход которого поступают сигналы напряжения на входе СГ (через трансформатор напряжения ТН) и тока нагрузки СГ (от трансформатора тока ТТ). Схема содержит блок защиты (БЗ), обеспечивающий защиту обмотки возбуждения (ОВ) от перенапряжения и токовой перегрузки.

Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5 % полезной мощности (меньшее значение относится к генераторам большой мощности).
В генераторах малой мощности находит применение принцип возбуждения постоянными магнитами, расположенными на роторе машины. Такой способ возбуждения даёт возможность избавить генератор от обмотки возбуждения. В результате конструкция генератора существенно упрощается, становится более экономичной и надёжной. Однако, из-за высокой стоимости материалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки применение возбуждения постоянными магнитами ограничено машинами мощностью не более нескольких киловатт.

Синхронные генераторы составляют основу электроэнергетики, так как практически вся электроэнергия во всём мире вырабатывается посредством синхронных турбо- или гидрогенераторов.
Так же синхронные генераторы находят широкое применение в составе стационарных и передвижных электроустановок или станций в комплекте с дизельными и бензиновыми двигателями.

Асинхронный генератор. Отличия от синхронного

Асинхронные генераторы принципиально отличаются от синхронных отсутствием жесткой зависимости между частотой вращения ротора и вырабатываемой ЭДС. Разницу между этими частотами характеризует коэффициент s — скольжение.

здесь:
n — частота вращения магнитного поля (частота ЭДС).
n r — частота вращения ротора.

Более подробно с расчётом скольжения и частоты можно ознакомиться в статье: асинхронные генераторы. Частота.

В обычном режиме электромагнитное поле асинхронного генератора под нагрузкой оказывает тормозной момент на вращения ротора, следовательно, частота изменения магнитного поля меньше, поэтому скольжение будет отрицательным. К генераторам, работающим в области положительных скольжений, можно отнести асинхронные тахогенераторы и преобразователи частоты.

Асинхронные генераторы в зависимости от конкретных условий применения выполняются с короткозамкнутым, фазным или полым ротором. Источниками формирования необходимой энергии возбуждения ротора могут являться статические конденсаторы или вентильные преобразователи с искусственной коммутацией вентилей.

Асинхронные генераторы можно классифицировать по способу возбуждения, характеру выходной частоты (изменяющаяся, постоянная), способу стабилизации напряжения, рабочим областям скольжения, конструктивному выполнению и числу фаз.
Последние два признака характеризуют конструктивные особенности генераторов.
Характер выходной частоты и методы стабилизации напряжения в значительной степени обусловлены способом образования магнитного потока.
Классификация по способу возбуждения является основной.

Можно рассмотреть генераторы с самовозбуждением и с независимым возбуждением.

Самовозбуждение в асинхронных генераторах может быть организовано:
а) с помощью конденсаторов, включенных в цепь статора или ротора или одновременно в первичную и вторичную цепи;
б) посредством вентильных преобразователей с естественной и искусственной коммутацией вентилей.

Независимое возбуждение может осуществляться от внешнего источника переменного напряжения.

По характеру частоты самовозбуждающиеся генераторы разделяются на две группы. К первой из них относятся источники практически постоянной (или постоянной) частоты, ко второй переменной (регулируемой) частоты. Последние применяются для питания асинхронных двигателей с плавным изменением частоты вращения.

Более подробно рассмотреть принцип работы и конструктивные особенности асинхронных генераторов планируется рассмотреть в отдельных публикациях.

Асинхронные генераторы не требуют в конструкции сложных узлов для организации возбуждения постоянным током или применения дорогостоящих материалов с большим запасом магнитной энергии, поэтому находят широкое применение у пользователей передвижных электроустановок по причине своей простоты и неприхотливости в обслуживании. Используются для питания устройств, не требующих жёсткой привязки к частоте тока.
Техническим достоинством асинхронных генераторов можно признать их устойчивость к перегрузкам и коротким замыканиям.
С некоторой информацией по мобильным генераторным установкам можно ознакомиться на странице:
Дизель-генераторы.
Асинхронный генератор. Характеристики.
Асинхронный генератор. Стабилизация.

Замечания и предложения принимаются и приветствуются!

Источник