Электрический ток в жидкостях и газах
Электрический ток в жидкостях
В металлическом проводнике электрический ток образуется направленным движением свободных электронов и что при этом никаких изменений вещества, из которого проводник сделан, не происходит.
Такие проводники, в которых прохождение электрического тока не сопровождается химическими изменениями их вещества, называются проводниками первого рода . К ним относятся все металлы, уголь и ряд других веществ.
Но есть в природе и такие проводники электрического тока, в которых во время прохождения тока происходят химические явления. Эти проводники называются проводниками второго рода . К ним относятся главным образом различные растворы в воде кислот, солей и щелочей.
Если в стеклянный сосуд налить воды и прибавить в нее несколько капель серной кислоты (или какой-либо другой кислоты или щелочи), а затем взять две металлические пластины и присоединить к ним проводники опустив эти пластины в сосуд, а к другим концам проводников подключить источник тока через выключатель и амперметр, то произойдет выделение газа из раствора, причем оно будет продолжаться непрерывно, пока замкнута цепь т.к. подкисленная вода действительно является проводником. Кроме того, пластины начнут покрываться пузырьками газа. Затем эти пузырьки будут отрываться от пластин и выходить наружу.
При прохождении по раствору электрического тока происходят химические изменения, в результате которых выделяется газ.
Проводники второго рода называются электролитами , а явление, происходящее в электролите при прохождении через него электрического тока, — электролизом .
Металлические пластины, опущенные в электролит, называются электродами; одна из них, соединенная с положительным полюсом источника тока, называется анодом , а другая, соединенная с отрицательным полюсом,— катодом .
Чем же обусловливается прохождение электрического тока в жидком проводнике? Оказывается, в таких растворах (электролитах) молекулы кислоты (щелочи, соли) под действием растворителя (в данном случае воды) распадаются на две составные части, причем одна частица молекулы имеет положительный электрический заряд, а другая отрицательный.
Частицы молекулы, обладающие электрическим зарядом, называются ионами . При растворении в воде кислоты, соли или щелочи в растворе возникает большое количество как положительных, так и отрицательных ионов.
Теперь должно стать понятным, почему через раствор прошел электрический ток, ведь между электродами, соединенными с источником тока, создана разность потенциалов, иначе говоря, один из них оказался заряженным положительно, а другой отрицательно. Под действием этой разности потенциалов положительные ионы начали перемешаться по направлению к отрицательному электроду — катоду, а отрицательные ионы — к аноду.
Таким образом, хаотическое движение ионов стало упорядоченным встречным движением отрицательных ионов в одну сторону и положительных в другую. Этот процесс переноса зарядов и составляет течение электрического тока через электролит и происходит до тех пор, пока имеется разность потенциалов на электродах. С исчезновением разности потенциалов прекращается ток через электролит, нарушается упорядоченное движение ионов, и вновь наступает хаотическое движение.
В качестве примера рассмотрим явление электролиза при пропускании электрического тока через раствор медного купороса CuSO4 с опущенными в него медными электродами.
Явление электролиза при прохождении тока через раствор медного купороса: С — сосуд с электролитом, Б — источник тока, В — выключатель
Здесь также будет встречное движение ионов к электродам. Положительным ионом будет ион меди (Си), а отрицательным — ион кислотного остатка (SO4). Ионы меди при соприкосновении с катодом будут разряжаться (присоединяя к себе недостающие электроны), т. е. превращаться в нейтральные молекулы чистой меди, и в виде тончайшего (молекулярного) слоя отлагаться на катоде.
Отрицательные ионы, достигнув анода, также разряжаются (отдают излишние электроны). Но при этом они вступают в химическую реакцию с медью анода, в результате чего к кислотному остатку SO4 присоединяется молекула меди С u и образуется молекула медного купороса С uS О 4 , возвращаемая обратно электролиту.
Так как этот химический процесс протекает длительное время, то на катоде отлагается медь, выделяющаяся из электролита. При этом электролит вместо ушедших на катод молекул меди получает новые молекулы меди за счет растворения второго электрода — анода.
Тот же самый процесс происходит, если вместо медных взяты цинковые электроды, а электролитом служит раствор цинкового купороса Z n SO4. Цинк также будет переноситься с анода на катод.
Таким образом, разница между электрическим током в металлах и жидких проводниках заключается в том, что в металлах переносчиками зарядов являются только свободные электроны, т. е. отрицательные заряды, тогда как в электролитах электричество переносится разноименно заряженными частицами вещества — ионами, двигающимися в противоположных направлениях. Поэтому говорят, что электролиты обладают ионном проводимостью.
Явление электролиза было открыто в 1837 г. Б. С. Якоби, который производил многочисленные опыты по исследованию и усовершенствованию химических источников тока. Якоби установил, что один из электродов, помещенных в раствор медного купороса, при прохождении через него электрического тока покрывается медью.
Это явление, названное гальванопластикой , находит сейчас чрезвычайно большое практическое применение. Одним из примеров тому может служить покрытие металлических предметов тонким слоем других металлов, т. е. никелирование, золочение, серебрение и т. д.
Электрический ток в газах
Газы (в том числе и воздух) в обычных условиях не проводят электрический ток. Например, голые провода воздушных линий, будучи подвешены параллельно друг другу, оказываются изолированными один от другого слоем воздуха.
Однако под воздействием высокой температуры, большой разности потенциалов и других причин газы, подобно жидким проводникам, ионизируются , т. е. в них появляются в большом количестве частицы молекул газа, которые, являясь переносчиками электричества, способствуют прохождению через газ электрического тока.
Но вместе с тем ионизация газа отличается от ионизации жидкого проводника. Если в жидкости происходит распад молекулы на две заряженные части, то в газах под действием ионизации от каждой молекулы всегда отделяются электроны и остается ион в виде положительно заряженной части молекулы.
Стоит только прекратить ионизацию газа, как он перестанет быть проводящим, тогда как жидкость всегда остается проводником электрического тока. Следовательно, проводимость газа — явление временное, зависящее от действия внешних причин.
Однако есть и другой вид электрического разряда, называемый дуговым разрядом или просто электрической дугой. Явление электрической дуги было открыто в начале 19-го столетия первым русским электротехником В. В. Петровым.
В. В. Петров, проделывая многочисленные опыты, обнаружил, что между двумя древесными углями, соединенными с источником тока, возникает непрерывный электрический разряд через воздух, сопровождаемый ярким светом. В своих трудах В. В. Петров писал, что при этом «темный покой достаточно ярко освещен быть может». Так впервые был получен электрический свет, практически применил который еще один русский ученый-электротехник Павел Николаевич Яблочков.
«Свеча Яблочкова», работа которой основана на использовании электрической дуги, совершила в те времена настоящий переворот в электротехнике.
Дуговой разряд применяется как источник света и в наши дни, например в прожекторах и проекционных аппаратах. Высокая температура дугового разряда позволяет использовать его для устройства дуговой печи. В настоящее время дуговые печи, питаемые током очень большой силы, применяются в ряде областей промышленности: для выплавки стали, чугуна, ферросплавов, бронзы и т.д. А в 1882 году Н. Н. Бенардосом дуговой разряд впервые был использован для резки и сварки металла.
В газосветных трубках, лампах дневного света, стабилизаторах напряжения, для получения электронных и ионных пучков используется так называемый тлеющий газовый разряд .
Искровой разряд применяется для измерения больших разностей потенциалов с помощью шарового разрядника, электродами которого служат два металлических шара с полированной поверхностью. Шары раздвигают, и на них подается измеряемая разность потенциалов. Затем шары сближают до тех пор, пока между ними не проскочит искра. Зная диаметр шаров, расстояние между ними, давление, температуру и влажность воздуха, находят разность потенциалов между шарами по специальным таблицам. Этим методом можно измерять с точностью до нескольких процентов разности потенциалов порядка десятков тысяч вольт.
Источник
Большая Энциклопедия Нефти и Газа
Лучший проводник
Лучший проводник — серебро ( табл. 5.7) имеет высокую степень миграции атомов по поверхности подложки и быстро покрывается пленкой сернистых соединений. [1]
Лучшие проводники теплоты и электрического тока — серебро, медь, золото и алюминий. [2]
Лучшим проводником является серебро, затем следует медь. [3]
Лучшими проводниками являются те металлы, которые оказывают наименьшее сопротивление прохождению электрического тока. [4]
Лучшими проводниками электричества являются серебро, медь, золото и алюминий, Эти же металлы являются наиболее теплопроводными. [5]
Лучшим проводником электричества является серебро, за которым следуют медь, золото, алюминий, железо. Наряду с медными изготовляются и алюминиевые электрические провода. [6]
Лучшими проводниками теплоты являются металлы, у которых Я изменяется от 3 до 418 вт / м-град. Коэффициенты теплопроводности чистых металлов, за исключением алюминия, с возрастанием температуры убывают. [7]
Лучшим проводником электричества является серебро, за которым следуют медь, золото, алюминий, железо. Наряду с медными изготовляются и алюминиевые электрические провода. [8]
Один из лучших проводников электричества — медь — никак не удается перевести в сверхпроводящее состояние. [9]
Один из лучших проводников электричества — медь — никак не удается перевести в сверхпроводящее состояние. [10]
Серебро — самый лучший проводник электричества и тепла. В изделиях применяется в виде сплава с другими металлами, главным образом с медью, что повышает их твердость. Содержание серебра в сплавах указывается пробой. [11]
Тугоплавкие металлы являются лучшими проводниками электрического тока , но характеристики их значительно хуже, чем легкоплавких металлов, так как температура плавления их высока. Так, например, температура плавления меди равна 1080 С, а серебра 960 С. Плавкие вставки из меди и серебра обладают малым сечением и большой разрывной способностью. [12]
Низшее хлористое соединение металла является лучшим проводником тока , чем высшее хлористое соединение того же металла. [13]
После серебра и меди металлический алюминий — лучший проводник электричества и тепла. [14]
Если труба водяная ( вода обычно является лучшим проводником , чем почва), то это воздействие будет обнаружено внутри трубы. Сваренные трубы в значительной степени уменьшают неприятности о т соединений, и теперь сварка часто применяется для газовых магистралей. [15]
Источник
Лучшие проводники электрического тока
При использовании электроприборов человек постоянно сталкивается с веществами, которые являются проводниками, полупроводниками и диэлектриками, не проводящими ток. Эти материалы отличаются степенью электропроводности. Для того чтобы работать с бытовой техникой, необходимо знать все их особенности и характеристику. Выбрать лучший проводник электрического тока можно из металлов.
Особенности понятия
Проводниками тока называют те вещества, в которых количество свободных электрических зарядов превышает число связанных. Они могут начинать двигаться под влиянием внешней силы. Состояние материалов может быть газообразным, твёрдым и жидким. Электричество может протекать по металлической проволоке, если её подключить между двумя проводниками с разными потенциалами.
Ток переносят электроны, не связанные между собой атомами. Именно они способны охарактеризовать способность предмета пропускать через себя электрические заряды, или величину проводимости тока. Её значение обратно пропорционально сопротивлению, она измеряется в сименсах: См = 1/Ом.
Основные носители электричества в природе — это ионы, дырки и электроны. Поэтому способность к проводимости делят на три вида:
- ионную;
- электронную;
- дырочную.
Приложенное напряжение даёт возможность оценить качество проводника. Эту способность вещества называют ещё вольт-амперной характеристикой.
Первый и второй род
После того как получилось разобраться с тем, что проводит электрический ток, нужно узнать особенности некоторых веществ. Проводники могут быть разными — металлическая проволока, морская вода. Но в них ток различается, поэтому вещества делят на две группы:
- первого рода, в которых электричество протекает по электронам;
- второй вид — на основе ионов.
К первым относят все металлы и углерод. Ко второму роду относят щелочи, кислоты, соляные расплавы — электролиты. В них ток представляет упорядоченное движение отрицательных и положительных ионов. Электричество в таких материалах протекает при любом показателе напряжения. В обычных условиях хороший проводник электрического тока — это изделие из золота, серебра, алюминия или меди.
Их двух последних материалов изготавливают кабели, отличающиеся низкой стоимостью. Качественное жидкое вещество, проводящее ток — ртуть, а также ток хорошо протекает через углерод. Но это вещество не обладает гибкостью, поэтому на практике его не применяют. Хотя физики недавно смогли представить углерод в форме графена, что позволило из его нитей изготавливать шнуры.
У графеновых изделий сопротивление такое, что оно является недопустимым для проводников. Их позволительно использовать только в нагревателях. В этом случае металлические провода из никеля и хрома проигрывают, так как они не могут выдержать очень высокую температуру. Спирали в лампах дневного света изготавливают из вольфрама. Этот материал способен накаливаться, так как вещество является тугоплавким.
Процессы в электропроводниках
Во время протекания электричества проводник попадает под определённое воздействие. Самое главное — это повышение температуры. А также выделяют некоторые химические реакции, которые могут изменить физические свойства вещества. Более всего такому влиянию подвергаются проводники второго рода. В них протекает химическая реакция, которую называют электролизом.
Ионы веществ около электрических полюсов получают необходимый заряд и восстанавливают исходное состояние, которое было у них до образования щелочи, кислоты или соли. С помощью электролиза химики и физики могут получать чистые химические вещества из природного сырья. Таким образом создают алюминий и другие виды металлов.
Вещества первого и второго рода участвуют в других процессах, кроме проводимости электричества. К примеру, во время взаимодействия кислоты со свинцом возникает химическая реакция, которая вызывает выделение тока. По такому принципу работают все аккумуляторы. Проводники первой группы при контакте друг с другом могут изменяться. Медь и алюминий при эксплуатации нужно покрывать специальной оболочкой, иначе оба металла просто расплавятся. Влажный воздух приведёт к тому, что произойдёт электрохимическая реакция. Поэтому проводники покрывают слоем лака или другого защитного материала.
Некоторые проводники не могут оказывать электричеству сопротивление при холодном воздухе. Такое явление называют сверхпроводимостью, которая соответствует значению температуры, близкой к химическому состоянию жидкого гелия. Но исследования привели к тому, что есть новые проводники с высокими показателями температуры.
Такие вещества были открыты в 20 веке. Керамика из кислорода, бария, меди и лантана при обычных условиях не проводит ток, но после нагревания становится сверхпроводником. На практике выгодно использовать вещества, которые могут пропускать электричество при 58 градусах по Кельвину и выше — температуре, превышающей отметку кипения азота.
Жидкость и газы, проводящие ток, используют реже твёрдых веществ. Но и они необходимы для изготовления современных электрических приборов.
Ладыжин Валерий
Источник
Отвечаем на вопрос: проводит ли электрический ток дистиллированная вода?
Поскольку в дистиллированной воде практически отсутствуют различные примеси и вещества, то считается, что она не проводит ток.
Дистиллят также не является его проводником по ряду других причин. Все это обусловлено такими показателями дистиллированной воды, как удельная электрическая проводимость и диэлектрическая проницаемость.
Попробуем разобраться, проводит ли ток дистиллированная вода.
Проводит электричество или нет?
Теоретически дистиллированная вода не относится к числу веществ, проводящих электроток. В идеально чистой жидкой среде отсутствуют минеральные соли и дополнительные примеси.
В ней практически нет свободных ионов. В такой среде отсутствуют подходящие условия для их взаимодействия.
На практике из водного раствора не удается полностью удалить все соли и примеси. Их концентрация в ней существенно ниже, чем в обычной воде.
Но такая очищенная среда все равно содержит в себе некоторое количество веществ, которые могут передавать электричество. Такая жидкая среда может быть слабым проводником.
Почему не передает?
Очищенные растворы не являются передатчиками электричества по следующим причинам:
- в них нет растворенных солей или их уровень низкий;
- не имеют в своем составе заряженных ионов;
- в них не присутствуют прочие вещества, способные выступать посредниками при передаче электрических разрядов.
Электропроводность повышается благодаря присутствию в воде примесей и солей. А поскольку в дистилляте их практически нет, то сами по себе водные молекулы ток провести не смогут.
Показатели растворов, влияющие на их электропроводимость
На возможность проведения электрических разрядов очищенными смесями оказывают влияние два значения. Первое из них – удельная электропроводность.
Она позволяет выяснить, насколько жидкая субстанция способна пропускать электроток. Для этого на нее воздействуют электрополем.
Второй показатель – диэлектрическая проницаемость. Она дает представление о том, насколько жидкость слабо проводит электроток.
Удельная электропроводность
Для дистиллированных составов установлено ее специальное значение. Если они соответствуют ему, то признаются дистиллятами.
Удельная электропроводимость для стерильной H2O зафиксирована ГОСТом 6709-72. Ее оптимальная величина составляет 0,5 мСименс/м.
Это очень маленький коэффициент. При таком уровне состав практически не может пропускать электроток.
Также играет роль температура среды. Для дистиллята оптимальным будет показатель в 0,5 мСименс/м при его температуре в 200С. Если значение электропроводности будет больше, то вода уже не будет считаться дистиллированной.
Удельная электропроводимость в 0,5 мСименс/м является нормой для данного типа воды.
Диэлектрическая проницаемость
Данный коэффициент позволяет охарактеризовать то, каковы электрические свойства дистиллята. Он дает представление о том, насколько хорошо дистиллированные составы изолируют токовые частицы.
При этом коэффициент будет уменьшаться вместе с нагреванием жидкости. При кипении показатель уже составляет 55. То есть вместе с нагреванием вода начнет лучше отдавать электроток. Коэффициент падает в два раза, если воду нагреть до 2000С. Значение составит уже порядка 34,5.
Передатчиком или диэлектриком выступает дистиллят?
Поскольку у раствора низкая величина электропроводности и достаточно высокий уровень изолирующей проницаемости, то он является диэлектриком.
То есть такая смесь плохо отдает электроток или совсем его не проводит.
На то, что жидкость считается диэлектриком, влияет отсутствие в ней солей. Именно они улучшают проводимость.
Нехватка солей сопряжена с отсутствием в растворах свободных ионов. Они не могут передавать разряды. А сами молекулы считаются слабыми проводниками.
Много полезной и важной информации о дистиллированной воде найдете в этом разделе.
Заключение
Дистиллированная вода в целом не передает ток. Это обусловлено дефицитом в ней солей и иных примесей, которые могут выступать его хорошими проводниками. В связи с этим в стерильных смесях отсутствуют свободные ионы.
При этом плохим проводником будет только идеально чистая среда. Домашняя очищенная вода даже после очистки все равно будет иметь в составе соли. Из-за этого она может слабо пропускать токи.
Источник