Меню

Lm2576 в стабилизаторе тока

Источник постоянного тока на основе импульсного регулятора напряжения

Texas Instruments LM2576 TL082

Во многих приложениях требуются источники не напряжения, а тока. Если вам нужен источник большого постоянного тока, использование линейных регуляторов становится нецелесообразным из-за значительной мощности, рассеиваемой на последовательном резисторе. Решить проблему потребляемой мощности можно с помощью импульсного регулятора напряжения. В схеме, изображенной на Рисунке 1, использована микросхема импульсного понижающего преобразователя напряжения LM2576 (IC1). Микросхема, требующая всего нескольких внешних элементов, имеет вход обратной связи FDB, который можно использовать для управления выходным током. Резистор RSC служит датчиком тока. IC2A – половина микросхемы операционного усилителя TL082 – используется как дифференциальный усилитель. Если R1 = R2 = R3 = R4, выходное напряжение будет пропорционально току, проходящему через резистор RSC. От усилителя, работающего с большими изменяющимися сигналами, требуется хороший коэффициент подавления синфазного сигнала и широкий диапазон синфазных напряжений.

Рисунок 1. Импульсный регулятор напряжения может служить хорошей
основой для источника постоянного тока.

Вторая половина операционного усилителя TL082 – IC2B – включена неинвертирующим усилителем. Требуемый коэффициент усиления зависит от величины нужного вам выходного тока:

G – коэффициент усиления,
VREF – напряжение внутреннего опорного источника LM2576,
VSC – падение напряжения на RSC.

где IOUT – выходной ток.

Например, если IOUT = 2 А и RSC = 0.12 Ом, то VSC = 0.24 В. Типовое значение напряжения VREF для микросхемы LM2576 равно 1.237 В. Теперь из формулы для коэффициента усиления вы можете получить усиление неинвертирующего усилителя:

Результирующий коэффициент усиления неинвертирующего усилителя равен

Если R7 = 100 кОм и G = 5.15, можно найти, что R6 24.1 кОм. Если вам требуется точный выходной ток, резистор R6 можно заменить последовательным соединением постоянного и подстроечного резистора. Испытания схемы показали, что выходной ток практически не зависит от нагрузки. Например, при изменении выходного напряжения в диапазоне от 0.3 В до 15 В выходной ток 2 А менялся менее чем на 1%.

Материалы по теме

Перевод: AlexAAN по заказу РадиоЛоцман

Источник

Регулируемый стабилизатор напряжения на LM2576

Решил недавно отреставрировать свои колонки от ПК, которые достались мне, не помню когда и от кого. Данные колонки хрипели уже на пол громкости. Вид мне был не важен, так как они звучали в моей лаборатории, главное, чтобы был звук без треска и фона. Было принято решение собрать новый усилитель и темброблок. Но питать данные устройства я решил стабилизированным источником, поэтому стал собирать стабилизированный источник с возможностью регулировки выходного напряжения. Вообще мне было нужно однополярное напряжение +15 Вольт, но на всякий случай решил сделать регулируемое выходное напряжение.

Выбор пал на LM2576, их у меня было много, когда-то покупал для ремонта БП. LM2576 есть на фиксированное выходное напряжение 3.3В, 5В, 12В, 15, а также с регулируемым выходным напряжением. В регулируемой версии выходное напр-ие меняется от 1.23В до 37В, а у LM2576HV до 57 Вольт.

Входное же напр-ие может достигать 40В, а у LM2576HV до 60В. Максимальный выходной ток 3 А. Температура, которую может выдержать кристалл, составляет 150 градусов Цельсия.

Если у LM2576 фиксированное выходное напряжение, то в конце маркировки пишется индекс, например 3.3 или 5.0, который указывает выходное напряжение (пример маркировки стабилизатора на 5 Вольт — LM2576HV-5.0).

Схема регулируемого стабилизатора напряжения на LM2576

LM2576 схема

Ничего сложного нет. Дроссель можете выдернуть из блока питания ПК, например как этот.

Дроссель для стабилизатора

Если будете покупать или мотать, то 150 мкГн и на 5 Ампер, не менее. 20-30 Витков провода диаметром 0,8 мм достаточно.

Читайте также:  Дроссель для большого тока

Печатная плата

Остальные все элементы доступные.

Добавив диодный мост, получим регулируемый блок питания.

LM2576 с мостом1

Диодный мост можете собрать из диодов, или использовать любой с током 5 Ампер и более. Я применил KBU810, на 8 Ампер, другого не было.

Забыл на схеме подписать, тот вывод моста, который соединен с выводом №1 микросхемы, это плюс (+) диодного моста, а минус (-) диодного моста соединен с минусом выхода.

Микросхема LM Микросхема LM

Испытывая стабилизатор напряжения на LM2576, я использовал трансформатор с одной вторичной обмоткой, напряжением 20 Вольт и током 0.9 Ампер.

Выставил выходное напряжение 15 Вольт.

Проверка блока питания Проверка блока питания

Нагрузил сопротивлением 7.5 Ом. Выходной ток составил почти 2 Ампера.

Измерение выходного тока

Напряжение при этом просело до 13.7 Вольт. Не обращайте внимания друзья, это все из-за слабого трансформатора, пока другого нет.

Измерение напряжения под нагрузкой

Вот переменное напр-ние на трансформаторе без нагрузки 23.7 Вольт.

Холостой ход трансформатора

А вот оно же под нагрузкой 15.2 Вольта.

Трансформатор под нагрузкой

Видите, это не стабилизатор просаживает напругу, а трансформатор “не вывозит”. Был бы, трансформатор мощнее, напруга на выходе бы почти не проседала.

Источник

ПРЕОБРАЗОВАТЕЛЬ ДЛЯ СВЕТОДИОДОВ НА LM2576

Всё началось с того, что нужно было, с наименьшими возможными потерями, питать светодиод 3 Вт от батареи, дающей 12 вольт. Скорее всего многие сталкиваются с такой проблемой (особенно в автомобилях), поэтому будем рады поделиться своим решением.

Принципиальная схема БП LED на LM2576

Представленная схема это несколько необычное применение дешевого и простого инвертора LM2576. Он продается по цене 90 рублей в корпусе TO220-5. В Интернете имеется только информация об использовании его в качестве стабилизатора напряжения, а не тока. Чтобы понять как удалось добиться другого, вначале скажем несколько слов о том, как вообще работают микросхемы LM2576 и подобные чипы.

Существует две версии схемы — регулируемая и с предварительно заданным напряжением. Мы заинтересованы в первом, потому что у него есть вывод обратной связи, который играет ключевую роль в стабилизации выходного напряжения. Это вход преобразователя для измерения выходного напряжения, чтобы он мог регулировать свои рабочие параметры на его основе. Почему этот вывод выходит, а измерение не происходит внутри интегральной схемы, как в линейном стабилизаторе 7805?

Инвертор ожидает на этом выводе 1,23 В и сделает все возможное, чтобы удержать его таким. Не на выходе, только на выводе обратной связи. Если бы требовалось стабилизировать напряжение, поставили бы на выход делитель который подаст некоторую часть выходного напряжения на вывод обратной связи, например 10%, что дало бы стабильные 12,3 В. А как же стабилизировать ток?

Из закона Ома знаем что ток, протекающий через резистор, вызывает падение напряжения на нем. Если вставим резистор в массовую цепь (непосредственно рядом с выходом), то с одной стороны у нас будет 0 В, а с другой стороны напряжение со значением U = I ? R. Как вы уже знаете, конвертер сделает все, чтобы на контакте была обратная связь находилось строго 1,23 В. Давайте подключим этот контакт к измерительному резистору, например на 12 Ом. Что будет после подключения нагрузки?

Преобразователь выберет уровень напряжения так чтобы ток, протекающий в цепи, создавал падение напряжения 1,23 В на измерительном резисторе. Это произойдет при токе

100 мА. И не важно, какая (в пределах разумного) нагрузка будет подключена — ток всегда будет постоянным.

Правда на измерительном резисторе происходит падение напряжения и, следовательно, также происходит выделение тепла. В случае питания силового диода током 700 мА он будет равен 1,23 В х 0,7 А = 0,86 Вт. Довольно много, но всё-равно намного лучше чем с линейным стабилизатором. Но это можно улучшить. Мы знаем, что P = I квадрат на R. Поэтому давайте минимизируем R.

Читайте также:  Эффективное значение токов как рассчитать

Можно обмануть инвертор измерив падение напряжения на резисторе гораздо меньшего размера (например 0,33 Ом), а затем усилив его несколько раз. Для этого будем использовать операционный усилитель LM358. С помощью резистора и потенциометра настроим ОУ как не инвертирующий усилитель, где в качестве входа мы подключим сигнал от измерительного резистора, а вывод обратной связи преобразователя будет подключен к его выходу.

Давайте теперь посчитаем как установить ток 700 мА. При таком токе на резисторе 0,1 Ом получили бы падение 0,07 В. Каким должно быть усиление, чтобы выйти на 1.23 В? Приблизительно 1,23 / 0,07 = 17,6. Поэтому чтобы получить ток 0,7 А, следует выбрать коэффициент усиления 17,6х и резистор 0,1 Ом.

Выходной ток определяется как I = (1,23 / Rsc) / (1 + R2 / R1). Для схемы без усилителя составляет всего I = 1,23 / Rsc, потому что измерение происходит непосредственно на резисторе Rsc, поэтому и используем закон чистого Ома. В версии с усилителем он усиливает напряжение на Rsc в соответствии с не инвертирующей формулой, т.е. A = (1 + R2 / R1) раз.

В результате измерений эффективность этой схемы получается на уровне 75% и растет с потребляемым током. В общем это намного лучшее решение чем линейный стабилизатор, довольно простое и дешевое, и, кроме того, позволяет выполнять регулировку, поэтому схема обязательно найдет свое применение.

Испытания конвертера были проведены с большой разницей в напряжениях. Но на входе было 20 В, а на выходе 3,5 В. Ток, типичный для 3-ваттного белого диода. При этом нагрева деталей практически не было.

Источник



Блок питания на LM2576 c увеличенным выходным током до 8А

Импульсные преобразователи на МС LM2576 до сих пор пользуются большой популярностью за счёт их надёжности и минимальной «обвязки». Однако, максимальный ток в нагрузке 3А не всегда может оказаться достаточным. Ниже предлагается решение этого затруднения.

Характеристики:

  • Питающее напряжение — 35. 45В;
  • Выходное напряжение — 1,23. 27В;
  • Выходной ток — 8А;
  • Ограничение тока — 0,1. 8А;
  • КПД при Uвх=40В, Uвых=12,2В и токе 3,5А — 70%;
  • КПД при Uвх=33В, Uвых=18В и токе 5А — 77%;
  • Пульсации на нагрузке при выходном напряжении 12В и токе в 5А:

Основа схемы — МС DA2. Транзистор VT1, включенный последовательно с выходом DA2, выступает в роли эмиттерного повторителя, что и позволяет увеличить ток в нагрузке. Резистор R8 ограничивает выходной ток DA2 на уровне около 100 мА, он же закрывает транзистор VT1 по спаду импульса DA2. Ограничение по току в нагрузке реализовано на резисторе R14. Уровень тока нагрузки отслеживается с помощью дифференциального усилителя на DA3.2. Для минимизации потерь и рассеиваемой мощности на шунте R14 он имеет коэффициент усиления по напряжению равному 10ти, что позволяет уменьшить номинал шунта R14. ОУ DA3.1 используется в качестве компаратора, который ограничивает ток в нагрузке. Опорное напряжение (уровень ограничения) поступает со стабилизатора DA1 через делитель R3. R5 на выв.2 DA3.1. На выв.3 поступает сравниваемое напряжение с усилителя на DA3.2. В том случае, когда уровень напряжения на выв.3 DA3.1 начинает превышать уровень напряжения на выв.2, на выходе ОУ DA3.1 выв.1 появляется высокий уровень (более 1,23В, опорное напряжение LM2576), который, поступая на выв.4 ООС DA2 через диод VD2, ограничивает выходное напряжение, стабилизируя тем самым ток в нагрузке. При этом осуществляется индикация ограничения тока через элементы R9, VT2, R10, HL1. Обратная связь по напряжению осуществляется за счёт делителя R17, R18. Выходное напряжение определяется формулой Uвых=(((R17/R18)+1)*1,23)В. Резистор R16 необходим для развязки обратной связи по напряжению от сигнала ограничения тока на ОУ DA3.1. Диод VD3, включенный в обратную связь ОУ DA3.2, а так же резистор R7 устраняют на выходе ОУ DA3.2 постоянную составляющую при отсутствии тока в нагрузке (шунт R14), поскольку при однополярном питании МС LM358 имеет на выходе минимальное напряжение отличное от нуля.

Читайте также:  Индикатор тока воздушной линии итвл

В случае, если питающее напряжение схемы БП менее 33В, необходимо пересчитать номиналы делителя R1, R2 стабилизатора DA1 по формуле Uвых=(((R1/R2)+1)*1,25)В. Задача стабилизатора DA1 — в стабильном напряжении питания ОУ DA3 и опорного напряжения для схемы ограничения тока на делителе R3, R4, R5. При этом следует иметь ввиду, что разница между входным и выходным напряжением стабилизатора DA1 с учётом имеющих место пульсациях должна составлять не менее 3В. Примерно такая же разница необходима для нормальной работы БП в целом, т.е. максимальное выходное напряжение должно быть меньше питающего по крайней мере на 3 вольта, но лучше иметь запас в 5 вольт или более.

Ниже представлены фотографии собранного устройства.

Настройка устройства начинается с проверки уровня напряжения стабилизации DA1. Если оно соответствует требуемому, можно впаять/установить ОУ DA3. Далее проверяется необходимый диапазон регулируемого выходного напряжения. Поскольку переменный резистор R17 может иметь разброс сопротивления до 10%, возможно придётся подобрать номинал резистора R18. Для установки максимального тока БП подстроечный резистор R3 выкручивается до максимального сопротивления. Затем, подключив на выход амперметр, и уменьшая сопротивление R3, добиваются требуемого значения ограничения максимального тока.

Кольца для дросселей L1 и L2 имеют типоразмер К28х14х11, жёлтое кольцо с белым торцом, и К24х14х10, салатовое с синим торцом. Оба работали в компьютерном блоке питания ATX — L1 в качестве дросселя групповой стабилизации, L2 в цепи +3,3В. L1 имеет 62 витка, намотанного проводом диаметром 1,5мм, L2 используется готовый, для 40 мкГн он содержит 22 витка, намотанного в 2 провода диаметром 1,2мм и для самостоятельной намотки можно использовать жёлтое кольцо такого же типоразмера. Для минимизации звуковых эффектов оба дросселя пропитаны эпоксидной смолой.

Транзисторы VT1, VT2 и диод VD1 тоже из блока питания ATX. Искать именно эти элементы не обязательно, их можно заменить на аналогичные по характеристикам. Радиатор — половинка от процессорного кулера к материнской плате, в данном случае Soket-A. При питающем напряжении свыше 45В, необходимо заменить диод VD1 на аналогичный, с большим допустимым обратным напряжением, например SBL4060PT.

Минимальный порог ограничения выходного тока зависит от напряжения смещения ОУ DA3. Если есть необходимость уменьшить его минимальное значение, можно применить ОУ AD823N, напряжение смещение которого на порядок меньше. Резисторы R11. R13, R15 тоже могут иметь номиналы, отличные от схемы. В этом случае должны выполняться условия: R11=R13, R12=R15, R11/R12=10.

КПД устройства, а следовательно и нагрев силовых элементов зависит от тока нагрузки и уровня питающего и выходного напряжения. Поэтому при длительной работе и токе в нагрузке более 4А имеет смысл предусмотреть обдув платы небольшим вентилятором, как это делается, к примеру, в компьютерных блоках питания.

Для снижения нагрева и потерь на силовых дорожках печатной платы к ним припаиваются отрезки медного провода диаметром 1 мм:

Источник