Меню

Кто потребляет цепи постоянного тока

Постоянный ток. Электрические цепи постоянного тока: расчет

Постоянным током являются передвигающиеся в определенном направлении частицы с зарядом. По-другому ток можно назвать такими величинами, как сила тока или напряжение, которые являются постоянными и в направлении, и по значению.

Рассмотрим его характеристику, применение, а также электрические цепи постоянного тока. Ответим на вопросы, каким образом проводится исследование электрической цепи, как она рассчитывается и на некоторые другие.

постоянный ток электрические цепи постоянного тока

От плюса к минусу или наоборот?

В источнике электроны передвигаются от минусового значения к плюсовому. Несмотря на то что все об этом знают, принято считать направление от плюса к минусу. Интересно почему? Нам объясняют, что так исторически сложилось. Но так ли это на самом деле? Ведь эта «история» сложилась в какой-то совершенно незначительный промежуток времени.

В постоянном токе действуют главные законы электротехники: закон Ома и законы Кирхгофа. Ток называли раньше гальваническим, так как получили его в результате гальванической реакции. Когда электрический ток начали проводить в дома, велись жесткие споры о том, какой ток вводить: постоянный или переменный. «Войну» выиграл второй, так как он оказался менее затратным. Его гораздо проще передавать на большие расстояния благодаря легкой трансформации.

Как получается постоянный ток

Но и не исчез из использования постоянный ток. Электрические цепи постоянного тока встречаются, к примеру, в аккумуляторах.

Ток вырабатывается посредством электромагнитной индукции, после чего происходит выпрямление коллектором. Такую реакцию производит генератор, где тоже вырабатывается постоянный ток. Электрические цепи постоянного тока могут трансформироваться из переменного за счет преобразователей и выпрямителей.

Область применения

Применение этого вида достаточно широко. В большинстве бытовых приборов дома, к примеру, в компьютерном модеме, зарядке для мобильника, электрочайнике или кухонном комбайне работает именно постоянный ток. Электрические цепи постоянного тока вырабатываются и преобразуются на автомобильном генераторе и любом портативном приборе. На нем функционируют все промышленные двигатели, а в отдельных странах даже высоковольтные линии электрических передач. Даже в некоторых медицинских приборах он применяется.

методы расчета линейных электрических цепей постоянного тока

Постоянный ток является более безопасным, так как смертельный исход может наступить при ударе током от 300 мА, а при переменном — уже при 50-100 мА.

Электрическая цепь

Связь обеспечивается всеми устройствами, благодаря которым осуществляется передача, распределение и преобразование тепловой, электромагнитной, световой и иных видов энергоинформации. Процессы описаны такими электродвижущими силами, как ток и напряжение.

исследование электрической цепи постоянного тока лабораторная работа

Основные элементы электрических цепей постоянного тока

Основные элементы — это приемники и источники энергоинформации, соединяющиеся проводниками. В источниках различные виды энергии преобразуются в электрическую. А в приемниках, наоборот, электроэнергия переходит в иные виды.

Цепи, где преобразование, передача и получение электрической энергии происходит при постоянном значении напряжения и тока на протяжении всего времени, называются цепями постоянного тока. Там, где процесс происходит с переменным значением — цепями переменного тока.

электрическая емкость цепи постоянного тока

Чтобы произвести расчет и исследование электрической цепи постоянного тока (лабораторная работа для этих целей обычно служит), применяется схема замещения, то есть идеализированная цепь для расчета реальной. Чтобы ее получить, заменить нужно все элементы схемы. Физические процессы должны быть выражены в каждом математическом описании.

Резистивные элементы

Резистор является одним из приемников электроцепи. Его характеризует активное сопротивление, которое измеряется в Омах. Резистивные сопротивления или, как их еще называют, активные вводятся в схемы замещения, чтобы учитывать преобразующуюся электромагнитную энергию в иные виды.

Расчет сложных электрических цепей постоянного тока производится, если задать положительное направление всех токов и напряжений. Выбирают направление их узла, имеющего большой потенциал к узлу с меньшим потенциалом.

При независящем сопротивлении от тока резистор называют линейным, а электрическую цепь — линейной резистивной. Вольт-амперная характеристика выражается через линейную функцию, проходящую через начало координат.

При анализе таких цепей часто применяют принцип упрощения, состоящий в замене сложных участков электрической цепи на простые. Но ток и напряжение меняться не должны. Тогда цепь свернется до самого простого вида. Соединенные резистивные элементы должны быть параллельно и последовательно преобразованы.

контрольная работа электрической цепи постоянного тока

Последовательное и параллельное соединение

При последовательном соединении во всех элементах ток имеет одно и то же значение. Здесь напряжение определяется посредством суммы всех включенных сопротивлений, умноженной на I, то есть:

При параллельном соединении применяется постоянное напряжение, зато ток представляет собой сумму токов на каждом из элементов. Поэтому его можно представить как произведение напряжения на эквивалентную проводимость активных элементов. А она, в свою очередь, равна сумме проводимостей элементов. Вот из чего состоит постоянный ток.

Электрические цепи постоянного тока, помимо этого, содержат источники напряжения и тока.

Источники

Независимое напряжение (ЭДС, ток) от сопротивления внешней цепи называют его источником. Источник ЭДС (напряжения) измеряется на холостом ходу, то есть, где ток в источнике равен нулю. В схемах замещения резистор учитывает тепловые энергетические потери, которые выделяются из источника. Если он равен нулю, а источник тока — бесконечности, это — идеальный источник. Реальный всегда имеет конечное значение.

Внешние характеристики следующие: у источников ЭДС и напряжения зависимость возникает от протекающего тока, а у источника тока — от напряжения на зажимах.

Реальные источники имеют линейные и нелинейные участки. Рассмотрим методы расчета линейных электрических цепей постоянного тока. Они описаны в законе Ома для полной цепи, где I=E/(Rh+Rbh). Тогда U= E- RbhI. Из этих формул выводятся внутреннее сопротивление и внутренняя проводимость:

Расчет нелинейных электрических цепей постоянного тока производится на основе закона Кирхгофа. Методы расчета для линейных и нелинейных схем разные. Поэтому последние в рамках данной статьи не рассматриваются.

Приборы для измерения линейного участка

Электрическая емкость цепи постоянного тока содержит источники. А приборами, его измеряющие, являются: вольтметр для измерения напряжения на участке цепи и амперметр для последовательного включения в цепь. При нулевом значении внутреннего сопротивления и проводимости приборы являются идеальными.

Способы включения становятся более понятными при рассмотрении их с применением измерения сопротивления. По закону Ома R=U/I.

Мы знаем, что реальные приборы не имеют нулевого значения. Поэтому возможны лишь два варианта их включения:

  • внутреннее сопротивление вольтметра в разы больше измеряемого амперметра — такое, чтобы снижение напряжения на нем не сокращало снижение на измеряемом сопротивлении, а напряжение, которое измеряется вольтметром должно соответствовать рабочему диапазону;
  • внутреннее сопротивление вольтметра соизмеримо с измеряемым, а амперметра — существенно меньше измеряемого.

Эксперимент и задания для контрольной работы

Для измерения напряжения и тока применяются соответствующие генераторы. Внутреннее сопротивление у них измеряется посредством переключателей.

Вольтметр и амперметр входят в блок АВ1.

расчет сложных электрических цепей постоянного тока

Для измерения сопротивления применяются специальные схемы. В источнике электродвижущей силы внутреннее сопротивление должно быть выключенным.

основные элементы электрических цепей постоянного тока

В рекомендуемом задании, которое должна иметь контрольная работа, электрические цепи постоянного тока изучаются посредством определения параметров источника электродвижущей силы, источника тока, измерения сопротивления, изучения включения параллельного и последовательного сопротивлений, ВАХ.

Источник

Чем отличаются и где используются постоянный и переменный ток

В современном мире каждый человек с детства сталкивается с электричеством. Первые упоминания об этом природном явлении относятся к временам философов Аристотеля и Фалеса, которые были заинтригованы удивительными и загадочными свойствами электрического тока. Но лишь в 17 веке великие ученые умы начали череду открытий, касающихся электрической энергии, продолжающихся по сей день.

Читайте также:  Как убивает током 220 вольт

Открытие электрического тока и создание Майклом Фарадеем в 1831 г. первого в мире генератора кардинально изменило жизнь человека. Мы привыкли, что нашу жизнь облегчают приборы, работающие с использованием электрической энергии, но до сих пор у большинства людей нет понимания этого важного явления. Для начала, чтобы понять основные принципы электричества, необходимо изучить два основных определения: электрический ток и напряжение.

Чем отличаются и где используются постоянный и переменный ток

Что такое электрический ток и напряжение

Электрический ток – это упорядоченное движение заряженных частиц (носителей электрического заряда). Носителями электрического тока являются электроны (в металлах и газах), катионы и анионы (в электролитах), дырки при электронно-дырочной проводимости. Данное явление проявляется созданием магнитного поля, изменением химического состава или нагреванием проводников. Основными характеристиками тока являются:

  • сила тока, определяемая по закону Ома и измеряемая в Амперах (А), в формулах обозначается буквой I;
  • мощность, согласно закону Джоуля-Ленца, измеряемая в ваттах (Вт), обозначается буквой P;
  • частота, измеряемая в герцах (Гц).

Электрический ток, как носитель энергии используют для получения механической энергии с помощью электродвигателей, для получения тепловой энергии в отопительных приборах, электросварке и нагревателях, возбуждения электромагнитных волн различной частоты, создания магнитного поля в электромагнитах и для получения световой энергии в осветительных приборах и различного рода лампах.

Напряжение – это работа, совершаемая электрическим полем для перемещения заряда в 1 кулон (Кл) из одной точки проводника в другую. Исходя из данного определения, все-таки сложно осознать, что же такое напряжение.

Чтобы заряженные частицы перемещались от одного полюса к другому, необходимо создать между этими полюсами разность потенциалов (именно она и именуется напряжением). Единицей измерения напряжения является вольт (В).

Чем отличаются и где используются постоянный и переменный ток

Для окончательного понимания определения электрического тока и напряжения, можно привести интересную аналогию: представьте, что электрический заряд — это вода, тогда давление воды в столбе – это и есть напряжение, а скорость потока воды в трубе – это сила электрического тока. Чем выше напряжение, тем больше сила электрического тока.

Что такое переменный ток

Если менять полярность потенциалов, то направление протекания электрического тока меняется. Именно такой ток и называется переменным. Количество изменений направления за определенный промежуток времени называется частотой и измеряется, как уже было сказано выше, в герцах (Гц). Например, в стандартной электрической сети в нашей стране частота равна 50 Гц, то есть направление движения тока за секунду меняется 50 раз.

Что такое постоянный ток

Когда упорядоченное движение заряженных частиц имеет всегда только одно направление, то такой ток именуется постоянным. Постоянный ток возникает в сети постоянного напряжения, когда полярность зарядов с одной и другой стороны постоянна во времени. Его очень часто используют в различных электронных устройствах и технике, когда не требуется передача энергии на большое расстояние.

Источники электрического тока

Источником электрического тока обычно называется прибор или устройство, с помощью которого в цепи можно создать электрический ток. Такие устройства могут создавать как переменный ток, так и постоянный. По способу создания электрического тока они подразделяются на механические, световые, тепловые и химические.

Механические источники электрического тока преобразуют механическую энергию в электрическую. Таким оборудованием являются различного рода генераторы, которые за счет вращения электромагнита вокруг катушки асинхронных двигателей вырабатывают переменный электрический ток.

Световые источники преобразуют энергию фотонов (энергию света) в электрическую энергию. В них используется свойство полупроводников при воздействии на них светового потока выдавать напряжение. К такому оборудованию можно отнести солнечные батареи.

Тепловые – преобразуют энергию тепла в электричество за счет разности температур двух пар контактирующих полупроводников – термопар. Величина тока в таких устройствах напрямую связана с разностью температур: чем больше разница – тем больше сила тока. Такие источники применяются, например, в геотермальных электростанциях.

Химический источник тока производит электричество в результате химических реакций. Например, к таким устройствам можно отнести различного рода гальванические батареи и аккумуляторы. Источники тока на основе гальванических элементов обычно применяются в автономных устройствах, автомобилях, технике и являются источниками постоянного тока.

Преобразование переменного тока в постоянный

Электрические устройства в мире используют постоянный и переменный ток. Поэтому возникает потребность в том, чтобы преобразовывать один ток в другой или наоборот.

Чем отличаются и где используются постоянный и переменный ток

Из переменного тока можно получить постоянный ток с помощью диодного моста или, как его еще называют, «выпрямителя». Основной частью выпрямителя является полупроводниковый диод, который проводит электрический ток только в одном направлении. После этого диода ток не изменяет своего направления, но появляются пульсации, которые устраняют при помощи конденсаторов и других фильтров. Выпрямители бывают в механическом, электровакуумном или полупроводниковом исполнении.

В зависимости от качества изготовления такого устройства, пульсации тока на выходе будут иметь разное значение, как правило, чем дороже и качественнее сделан прибор – тем меньше пульсаций и чище ток. Примером таких устройств являются блоки питания различных приборов и зарядные устройства, выпрямители электросиловых установок в различных видах транспорта, сварочные аппараты постоянного тока и другие.

Для того, чтобы преобразовать постоянный ток в переменный используются инверторы. Такие приборы генерируют переменное напряжение с синусоидой. Существует несколько видов таких аппаратов: инверторы с электродвигателями, релейные и электронные. Все они отличаются друг от друга по качеству выдаваемого переменного тока, стоимости и размерам. В качестве примера такого устройства можно привести блоки бесперебойного питания, инверторы в автомобилях или, например, в солнечных электростанциях.

Где используется и в чём преимущества переменного и постоянного тока

Для выполнения различных задач может потребоваться использование как переменного тока, так и постоянного. У каждого вида тока есть свои недостатки и достоинства.

Переменный ток чаще всего используется тогда, когда присутствует необходимость передачи тока на большие расстояния. Такой ток передавать целесообразнее с точки зрения возможных потерь и стоимости оборудования. Именно поэтому в большинстве электроприборов и механизмов используется только этот вид тока.

Жилые дома и предприятия, инфраструктурные и транспортные объекты находятся на расстоянии от электростанций, поэтому все электрические сети — переменного тока. Такие сети питают все бытовые приборы, аппаратуру на производствах, локомотивы поездов. Приборов, работающих на переменном токе невероятное количество и намного проще описать те устройства, в которых используется постоянный ток.

Постоянный ток используется в автономных системах, таких, например, как бортовые системы автомобилей, летательных аппаратов, морских судов или электропоездов. Он широко используется в питании микросхем различной электроники, в средствах связи и прочей технике, где требуется минимизировать количество помех и пульсаций или исключить их полностью. В ряде случае, такой ток используется в электросварочных работах с помощью инверторов. Существуют даже железнодорожные локомотивы, которые работают от систем постоянного тока. В медицине такой ток используется для введения лекарств в организм с помощью электрофореза, а в научных целях для разделения различных веществ (электрофорез белков и прочее).

Читайте также:  Запиши формулу для расчета силы тока

Обозначения на электроприборах и схемах

Часто возникает потребность в том, чтобы определить на каком токе работает устройство. Ведь подключение устройства, работающего на постоянном токе в электрическую сеть переменного тока, неминуемо приведет к неприятным последствиям: повреждению прибора, возгоранию, электрическому удару. Для этого в мире существуют общепринятые условные обозначения для таких систем и даже цветовая маркировка проводов.

Чем отличаются и где используются постоянный и переменный ток

Условно, на электроприборах, работающих на постоянном токе указывается одна черта, две сплошных черты или сплошная черта вместе с пунктирной, расположенные друг под другом. Также такой ток маркируется обозначением латинскими буквами DC. Электрическая изоляция проводов в системах постоянного тока для положительного провода окрашена в красный цвет, отрицательного в синий или черный цвет.

На электрических аппаратах и машинах переменный ток обозначается английской аббревиатурой AC или волнистой линией. На схемах и в описании устройств его также обозначают двумя линиями: сплошной и волнистой, расположенных друг под другом. Проводники в большинстве случаев обозначаются следующим образом: фаза – коричневым или черным цветом, ноль – синим, а заземление желто-зеленым.

Почему переменный ток используется чаще

Выше мы уже говорили о том, почему переменный ток в настоящее время используется чаще, чем постоянный. И все же, давайте рассмотрим этот вопрос подробнее.

Споры о том, какой же ток в использовании лучше идет со времен открытий в области электричества. Существует даже такое понятие, как «война токов» — противоборство Томаса Эдисона и Николы Теслы за использование одного из видов тока. Борьба между последователями этих великих ученых просуществовала вплоть до 2007 года, когда город Нью-Йорк перевели на переменный ток с постоянного.

Чем отличаются и где используются постоянный и переменный ток

Самая главная причина, по которой переменный ток используется чаще – это возможность передавать его на большие расстояния с минимальными потерями . Чем больше расстояние между источником тока и конечным потребителем, тем больше сопротивление проводов и тепловые потери на их нагрев.

Для того, чтобы получить максимальную мощность необходимо увеличивать либо толщину проводов (и уменьшать тем самым сопротивление), либо увеличивать напряжение.

В системах переменного тока можно увеличивать напряжение при минимальной толщине проводов тем самым сокращая стоимость электрических линий. Для систем с постоянным током доступных и эффективных способов увеличивать напряжение не существует и поэтому для таких сетей необходимо либо увеличивать толщину проводников, либо строить большое количество мелких электростанций. Оба этих способа являются дорогостоящими и существенно увеличивают стоимость электроэнергии в сравнении с сетями переменного тока.

При помощи электротрансформаторов напряжение переменного тока эффективно (с КПД до 99%) можно изменять в любую сторону от минимальных до максимальных значений, что тоже является одним из важных преимуществ сетей переменного тока. Применение трехфазной системы переменного тока еще больше увеличивает эффективность, а механизмы, например, двигатели, которые работают в электросетях переменного тока намного меньше, дешевле и проще в обслуживании, чем двигатели постоянного тока.

Исходя из всего вышесказанного можно сделать вывод о том, что использование переменного тока выгодно в больших сетях и при передаче электрической энергии на большие расстояния, а для точной и эффективной работы электронных приборов и для автономных устройств целесообразно использовать постоянный ток.

Чем отличаются и где используются постоянный и переменный ток

Как устроен генератор переменного тока — назначение и принцип действия

Что такое активная и реактивная мощность переменного электрического тока?

Чем отличаются и где используются постоянный и переменный ток

Что такое частотный преобразователь, основные виды и какой принцип работы

Чем отличаются и где используются постоянный и переменный ток

Что такое конденсатор, виды конденсаторов и их применение

Чем отличаются и где используются постоянный и переменный ток

Как условно обозначаются элементы на электрических схемах?

Чем отличаются и где используются постоянный и переменный ток

Что такое варистор, основные технические параметры, для чего используется

Источник

Где и почему используется постоянный ток

Нет сегодня ни одной области техники, где в том или ином виде не использовалось бы электричество. Между тем, с требованиями к электрическим аппаратам связан род тока, питающего их. И хотя переменный ток распространен нынче по всему миру очень широко, есть тем не менее области, где просто не обойтись без постоянного тока.

Первыми источниками годного к использованию постоянного тока были гальванические элементы, которые принципиально давали химическим путем именно постоянный ток, представляющий собой поток электронов, движущихся в одном неизменном направлении. От этого и название у него «постоянный ток».

Сегодня постоянный ток получают не только от батареек и аккумуляторов, но и путем выпрямления переменного тока. Как раз о том, где и почему используется в наш век постоянный ток, и пойдет речь в данной статье.

Где и почему используется постоянный ток

Начнем с тяговых двигателей электротранспорта. Метро, троллейбусы, теплоходы и электрички традиционно приводятся в движение двигателями, питаемыми постоянным током. Двигатели постоянного тока изначально отличались от двигателей тока переменного тем, что в них можно было плавно изменять скорость при сохранении высокого крутящего момента.

Переменное напряжение выпрямляется на тяговой подстанции, после чего подается на контактную сеть, — так получают постоянный ток для общественного электротранспорта. На теплоходах электричество для питания двигателей может быть получено от дизельных генераторов постоянного тока.

В электромобилях так же применяются моторы постоянного тока, которые питаются от аккумулятора, и здесь снова получаем преимущество в виде быстро развиваемого крутящего момента привода, и имеем еще один важный плюс — возможность рекуперативного торможения. В момент торможения мотор превращается в генератор постоянного тока и заряжает аккумулятор.

Эскаватор

Мощные подъемные краны на металлургических заводах, где необходимо плавно орудовать огромного размера и чудовищной массы ковшами с расплавленным металлом — используют моторы постоянного тока опять же в силу их отличной регулируемости. Это же преимущество относится к применению моторов постоянного тока в шагающих экскаваторах.

Квадроткоптер

Бесколлекторные двигатели постоянного тока способны развивать огромные скорости вращения, измеряемые десятками и сотнями тысяч оборотов в минуту. Так, высокоскоростные электродвигатели постоянного тока небольших размеров устанавливают на жесткие диски, квадрокоптеры, пылесосы и т. д. Незаменимы они и в качестве шаговых приводов управления различными шасси.

Электролизная установка

Само по себе прохождение электронов и ионов в одном направлении при постоянном токе делает постоянный ток принципиально незаменимым при осуществлении электролиза.

Реакция разложения в электролите, под действием в нем постоянного тока, позволяет осадить на электродах определенные элементы. Так получают алюминий, магний, медь, марганец и другие металлы, а также газы: водород, фтор и т.д, и многие прочие вещества. Благодаря электролизу, то есть по сути — постоянному току, существуют целые отрасли металлургии и химической промышленности.

Гальваническое покрытие

Гальванотехника немыслима без постоянного тока. Металлы осаждают на поверхность изделий различной формы, таким образом осуществляют в частности хромирование и никелирование, создают печатные формы и металлические монументы. Что и говорить о применении гальванизации в медицине для лечения болезней.

Читайте также:  Как найти ток утечки в конденсаторе

Сварка на постоянном токе

Сварка на постоянном токе гораздо эффективнее, чем на токе переменном, шов получается на много более качественным, чем при сварке того же изделия тем же электродом, но током переменным. Все современные сварочные инверторы выдают на электрод постоянное напряжение.

Мощная дуговая лампа

Мощные дуговые лампы, устанавливаемые в кинопроекторах многочисленных профессиональных киностудий дают ровный свет без гудящей дуги как раз благодаря питанию дуги постоянным током. Светодиоды, так те принципиально питаются током постоянным, именно поэтому большинство сегодняшних прожекторов питаются постоянным током, хотя и получаемым путем преобразования переменного сетевого тока или же от аккумуляторов (что иногда очень даже удобно).

Аккумулятор автомобиля

Двигатель внутреннего сгорания автомобиля хоть и питается бензином, однако стартует он от аккумулятора. И здесь постоянный ток. Стартер получает питание от батареи с напряжением в 12 вольт, и в момент старта забирает от нее ток в десятки ампер.

После старта аккумулятор в автомобиле заряжается генератором, который вырабатывает переменный трехфазный ток, тут же выпрямляемый и подаваемый на клеммы аккумулятора. Переменным током аккумулятор не зарядишь.

Бесперебойный источник питания

А резервные источники питания? Если даже огромная электростанция встала из-за аварии, то и здесь дать старт турбогенераторам помогут вспомогательные аккумуляторы. И самые простые домашние источники бесперебойного питания компьютеров — тоже не обойдутся без аккумуляторов, дающих постоянный ток, из которого путем преобразования в инверторе получается ток переменный. А сигнальные лампы и аварийное освещение — почти везде питается от аккумуляторов, то есть и здесь пригодился постоянный ток.

Подводная лодка

Подводная лодка — и та использует на борту постоянный ток для питания электродвигателя, вращающего гребной винт. Вращение турбогенератора на самых современных атомоходах хотя и достигается путем ядерных реакций, однако электроэнергия подается на двигатель в виде все того же постоянного тока. Это же касается и дизель-электрических субмарин.

Мобильный телефон

И конечно, не только электровозы шахт, погрузчики или электрокары используют постоянный ток от аккумуляторов. Все электронные гаджеты, которые мы носим с собой, содержат литиевые аккумуляторы, которые выдают постоянное напряжение и заряжаются постоянным током от зарядных устройств. А если вспомнить радиосвязь, телевидение, радио- и теле- вещание, интернет и т. д. На самом деле выходит, что добрая часть всех устройств питается прямо или косвенно постоянным током от аккумуляторов.

Источник



Электрическая цепь постоянного тока и ее характеристики

Человечество давно научилось использовать электрические явления природы в своих практических целях для получения, использования, а также преобразования энергии. Такое действие достигается путем применения определенных устройств. Элементы оборудования в совокупности образуют систему. Такая система известна, как электрическая цепь.

Элементы цепи

Электрическая цепь содержит в себе такие составляющие, как источники энергии, потребители, а также соединяющие их провода.

Существуют дополнительные приборы цепи, например, выключатели, измерители тока и защитные аппараты.

Источниками энергии в схеме такой цепи выступают аккумуляторы, генераторы тока и гальванические элементы. Их еще называют источниками питания.

В приемниках электрической цепи электроэнергия преобразовывается в другой тип энергии. Таким оборудованием бывают двигатели, нагреватели, лампы и т. д.

Стоит отметить, что система может быть внешней и внутренней. Они отличаются наличием приемника. Открытая цепь имеет его в своем составе, а закрытая — только источник тока.

Электрическая цепь постоянного тока

Ток, величина которого не меняется с течением времени, называется постоянным.

Цепь, через которую проходит такой источник электричества, имеет замкнутую систему. Это электрические цепи постоянного тока. Их составляют различные элементы.

Для обеспечения постоянного источника энергии в системе применяются конденсаторы. Они способны накапливать запасы электрических зарядов.

Электрическая цепь

Емкость конденсатора зависит от размера его металлических пластин.

Чем они больше, тем больший заряд может накопить этот элемент электрической цепи постоянного тока. Электрическую емкость изменяют в таких единицах, как фарада (ф). На схеме этот элемент выглядит следующим образом.

Схема электрической цепи

Вместе с источниками и приемниками тока эти элементы образуют электрические цепи постоянного тока.

Последовательное соединение в цепи

Большое количество электрических цепей состоят из нескольких приемников тока. Если эти элементы соединены друг с другом последовательно, то конец одного приемника присоединен к началу другого. Это последовательное соединение системы.

Электрические цепи постоянного тока

Сопротивление в этой электрической цепи приравнивается к сумме сопротивлений всех проводников системы. Они удлиняют пути прохождения тока, который будет одинаковым на отдельных участках системы.

Схема электрической цепи в классическом варианте содержит последовательно присоединенные проводники и нагляднее всего описывается таким прибором, как электрогирлянда.

Недостатком такой системы является тот факт, что в случае выхода из строя одного проводника, система не будет работать вся целиком.

Параллельное соединение цепи

Схема электрической цепи параллельного типа соединения элементов является системой, в которой начало содержащихся в ней проводников соединяются в одной точке, а концы их — в другой. Электрический ток в такой электрической системе имеет несколько вариантов пути прохождения. Он распределяется обратнопропорционально сопротивлению приемников энергии.

Сопротивление электрической цепи

Если у потребителей величина сопротивления одинаковая, то через них будет проходить одинаковый ток. В случае когда у одного приемника энергии сопротивление меньше, через него может пройти больше тока, чем через другие элементы системы.

Электрическая цепь и электрический ток, протекающий по ней, характеризуют электромагнитные процессы при помощи напряжения и силы тока. Сумма отдельно взятых элементов системы будет равна току в точке их соединения.

Присоединяя к такой цепи новые элементы, сопротивление системы будет уменьшаться. Это связано с увеличением общего сечения проводников при соединении нового потребителя электроэнергии. Позитивной характеристикой такого способа соединения цепи является автономность каждого элемента.

При отключении одного потребителя, совокупное сечение проводников уменьшается, а сопротивление электрической цепи становится большим.

Смешанное соединение в цепи

Смешанный вариант соединения довольно распространен в сфере производства электротехники.

Электрическая цепь и электрический ток

Эта цепь содержит в себе одновременно принцип последовательного и параллельного присоединения проводников.

Чтобы определить сопротивление нескольких потребителей такой схемы, находят отдельно сопротивление всех параллельно и последовательно присоединенных проводников. Их приравнивают к единому проводнику, что в итоге упрощает всю схему.

Режимы работы цепи

Опираясь на показатели нагрузки, различают такие режимы функционирования цепи: номинальный, холостой ход, замыкание и согласование.

При номинальной работе система выполняет характеристики, заявленные в техпаспорте оборудования. Холостой ход образуется в случае обрыва цепи. Этот режим работы относится к аварийным. Электрическая цепь в режиме короткого замыкания имеет сопротивление, которое равно нулю. Это также аварийный режим.

Согласование характеризуется перемещением наибольшей мощности от источника энергии к проводнику. В таком режиме нагрузка равняется сопротивлению источника питания.

Ознакомившись с основными характеристиками и видами такой системы, как электрическая цепь, становится возможным понять принцип функционирования любого электрооборудования. Данное устройство работы системы применяется к любому электрическому бытовому прибору. Применяя полученные знания, можно понять причину поломки оборудования или оценить правильность его работы в соответствии с техническими характеристиками, заявленными производителем.

Источник