Меню

Кпд источника тока от внешней нагрузки

КПД источника тока

В процессе перемещения зарядов внутри замкнутой цепи, источником тока совершается определенная работа. Она может быть полезной и полной. В первом случае источник тока перемещает заряды во внешней цепи, совершая при этом работу, а во втором случае – заряды перемещаются во всей цепи. В этом процессе большое значение имеет КПД источника тока, определяемого, как соотношение внешнего и полного сопротивления цепи. При равенстве внутреннего сопротивления источника и внешнего сопротивления нагрузки, половина всей мощности будет потеряна в самом источнике, а другая половина выделится на нагрузке. В этом случае коэффициент полезного действия составит 0,5 или 50%.

  1. КПД электрической цепи
  2. Что такое КПД источника тока
  3. Исследование мощности и КПД источника тока
  4. Задачи на мощность тока и КПД

КПД электрической цепи

Рассматриваемый коэффициент полезного действия в первую очередь связан с физическими величинами, характеризующими скорость преобразования или передачи электроэнергии. Среди них на первом месте находится мощность, измеряемая в ваттах. Для ее определения существует несколько формул: P = U x I = U2/R = I2 x R.

В электрических цепях может быть различное значение напряжения и величина заряда, соответственно и выполняемая работа тоже отличается в каждом случае. Очень часто возникает необходимость оценить, с какой скоростью передается или преобразуется электроэнергия. Эта скорость представляет собой электрическую мощность, соответствующую выполненной работе за определенную единицу времени. В виде формулы данный параметр будет выглядеть следующим образом: P=A/∆t. Следовательно, работа отображается как произведение мощности и времени: A=P∙∆t. В качестве единицы измерения работы используется джоуль (Дж).

Для того чтобы определить, насколько эффективно какое-либо устройство, машина электрическая цепь или другая аналогичная система, в отношении мощности и работы используется КПД – коэффициент полезного действия. Данная величина определяется как отношение полезно израсходованной энергии, к общему количеству энергии, поступившей в систему. Обозначается КПД символом η, а математически определяется в виде формулы: η = A/Q x 100% = [Дж]/[Дж] х 100% = [%], в которой А – работа выполненная потребителем, Q – энергия, отданная источником. В соответствии с законом сохранения энергии, значение КПД всегда равно или ниже единицы. Это означает, что полезная работа не может превышать количество энергии, затраченной на ее совершение.

Таким образом, определяются потери мощности в какой-либо системе или устройстве, а также степень их полезности. Например, в проводниках потери мощности образуются, когда электрический ток частично превращается в тепловую энергию. Количество этих потерь зависит от сопротивления проводника, они не являются составной частью полезной работы.

Существует разница, выраженная формулой ∆Q=A-Q, наглядно отображающей потери мощности. Здесь очень хорошо просматривается зависимость между ростом потерь мощности и сопротивлением проводника. Наиболее ярким примером служит лампа накаливания, КПД у которой не превышает 15%. Остальные 85% мощности превращаются в тепловое, то есть в инфракрасное излучение.

Что такое КПД источника тока

КПД источника тока

Рассмотренный коэффициент полезного действия всей электрической цепи, позволяет лучше понять физическую суть КПД источника тока, формула которого также состоит из различных величин.

В процессе перемещения электрических зарядов по замкнутой электрической цепи, источником тока выполняется определенная работа, которая различается как полезная и полная. Во время совершения полезной работы, источника тока перемещает заряды во внешней цепи. При полной работе, заряды, под действием источника тока, перемещаются уже по всей цепи.

В виде формул они отображаются следующим образом:

  • Полезная работа – Аполез = qU = IUt = I2Rt.
  • Полная работа – Аполн = qε = Iεt = I2(R +r)t.

На основании этого, можно вывести формулы полезной и полной мощности источника тока:

  • Полезная мощность – Рполез = Аполез /t = IU = I2R.
  • Полная мощность – Рполн = Аполн/t = Iε = I2(R + r).

В результате, формула КПД источника тока приобретает следующий вид:

  • η = Аполез/ Аполн = Рполез/ Рполн = U/ε = R/(R + r).

Максимальная полезная мощность достигается при определенном значении сопротивления внешней цепи, в зависимости от характеристик источника тока и нагрузки. Однако, следует обратить внимание на несовместимость максимальной полезной мощности и максимального коэффициента полезного действия.

Исследование мощности и КПД источника тока

Коэффициент полезного действия источника тока зависит от многих факторов, которые следует рассматривать в определенной последовательности.

Источник

Полная и полезная мощность. Коэффициент полезного действия (к. п. д. )

Мощность, развиваемая источником тока во всей цепи, называется полной мощностью.

Она определяется по формуле

где Pоб-полная мощность, развиваемая источником тока во всей цепи, вт;

Е- э. д. с. источника, в;

I-величина тока в цепи, а.

В общем виде электрическая цепь состоит из внешнего участка (нагрузки) с сопротивлением R и внутреннего участка с сопротивлением R (сопротивлением источника тока).

Заменяя в выражении полной мощности величину э. д. с. через напряжения на участках цепи, получим

Величина UI соответствует мощности, развиваемой на внешнем участке цепи (нагрузке), и называется полезной мощностью Pпол=UI.

Величина UoI соответствует мощности, бесполезно расходуемой внутри источника, Ее называют мощностью потерь Po=UoI.

Таким образом, полная мощность равна сумме полезной мощности и мощности потерь Pоб=Pпол+P0.

Отношение полезной мощности к полной мощности, развиваемой источником, называется коэффициентом полезного действия, сокращенно к. п. д.,и обозначается η.

Из определения следует

При любых условиях коэффициент полезного действия η ≤ 1.

Если выразить мощности через величину тока и сопротивления участков цепи, получим

Таким образом, к. п. д. зависит от соотношения между внутренним сопротивлением источника и сопротивлением потребителя.

Обычно электрический к. п. д. принято выражать в процентах.

Для практической электротехники особый интерес представляют два вопроса:

1. Условие получения наибольшей полезной мощности

2. Условие получения наибольшего к. п. д.

Условие получения наибольшей полезной мощности (мощности в нагрузке)

Наибольшую полезную мощность( мощность на нагрузке) электрический ток развивает в том случае, если сопротивление нагрузки равно сопротивлению источника тока.

Эта наибольшая мощность равна половине всей мощности (50%) развиваемой источником тока во всей цепи.

Половина мощности развивается на нагрузке и половина развивается на внутреннем сопротивлении источника тока.

Если будем уменьшать сопротивление нагрузки, то мощность развиваемая на нагрузке будет уменьшаться а мощность развиваемая на внутреннем сопротивлении источника тока будет увеличиваться.

Если сопротивление нагрузки равно нулю то ток в цепи будет максимальным, это режим короткого замыкания (КЗ). Почти вся мощность будет развивается на внутреннем сопротивлении источника тока. Этот режим опасен для источника тока а также для всей цепи.

Если сопротивление нагрузки будем увеличивать, то ток в цепи будет уменьшатся, мощность на нагрузке также будет уменьшатся. При очень большом сопротивлении нагрузки тока в цепи вообще не будет. Это сопротивление называется бесконечно большим. Если цепь разомкнута то ее сопротивление бесконечно большое. Такой режим называется режимом холостого хода.

Читайте также:  Как рассчитать сколько ток в одном киловатте

Таким образом, в режимах, близких к короткому замыканию и к холостому ходу, полезная мощность мала в первом случае за счет малой величины напряжения, а во втором за счет малой величины тока.

Условие получения наибольшего к. п. д коэффициента полезного действия

Коэффициент полезного действия (к. п. д.) равен 100% при холостом ходе ( в этом случае полезная мощность не выделяется, но в то же время и не затрачивается мощность источника).

По мере увеличения тока нагрузки к. п. д. уменьшается по прямолинейному закону.

В режиме короткого замыкания к. п. д. равен нулю ( полезной мощности нет, а мощность развиваемая источником, полностью расходуется внутри него).

Подводя итоги вышеизложенному, можно сделать выводы.

Условие получения максимальной полезной мощности( R=R) и условие получения максимального к. п. д. (R=∞) не совпадают. Более того, при получении от источника максимальной полезной мощности ( режим согласованной нагрузки) к. п. д.составляет 50%, т.е. половина развиваемой источником мощности бесполезно затрачивается внутри него.

В мощных электрических установках режим согласованной нагрузки является неприемлемым, так как при этом происходит бесполезная затрата больших мощностей. Поэтому для электрических станций и подстанций режимы работы генераторов, трансформаторов, выпрямителей рассчитываются так, чтобы обеспечивался высокий к. п. д. ( 90% и более).

Иначе обстоит дело в технике слабых токов. Возьмем, например, телефонный аппарат. При разговоре перед микрофоном в схеме аппарата создается электрический сигнал мощностью около 2 мвт. Очевидно, что для получения наибольшей дальности связи необходимо передать в линию как можно большую мощность, а для этого требуется выполнить режим согласованного включения нагрузки. Имеет ли в данном случае существенное значение к. п. д.? Конечно нет, так как потери энергии исчисляются долями или единицами милливатт.

Режим согласованной нагрузки применяется в радиоаппаратуре. В том случае, когда согласованный режим при непосредственном соединении генератора и нагрузки не обеспечивается, применяют меры согласования их сопротивлений.

Источник

Зависимость мощности и КПД источника тока от нагрузки

Главная > Лабораторная работа >Промышленность, производство

Зависимость мощности и КПД источника тока от нагрузки

Приборы и принадлежности: лабораторная панель, два аккумулятора, миллиамперметр, вольтметр, переменные резисторы.

Введение. Наиболее широко распространенными источниками постоянного тока являются гальванические элементы, аккумуляторы, выпрямители. Присоединим к источнику тока ту часть, которая нуждается в его электрической энергии (лампочка, радиоприемник, микрокалькулятор и т.п.). Эта часть электрической цепи называется общим словом – нагрузкой. Нагрузка обладает некоторым электрическим сопротивлением R и потребляет от источника ток силой I (рис.1).

Н агрузка образует внешнюю часть электрической цепи. Но есть и внут-ренняя часть цепи – это фактически сам источник тока, он имеет электрическое сопротивление r , в нем протекает тот же ток I . Границей между внутренним и внешним участками цепи являются клеммы “+” и “–” источника тока, к которым присоединяется потребитель

Рис.1 электрической энергии (нагрузка).

На рисунке 1 источник тока охвачен штриховым контуром.

Источник тока с электродвижущей силой Е создает в замкнутой цепи ток, сила которого определяется законом Ома :

При протекании тока по сопротивлениям R и r в них выделяется тепловая энергия, определяемая законом Джоуля-Ленца. Мощность во внешней части цепи Р е – внешняя мощность

Эта мощность является полезной .

Мощность во внутренней части Р i – внутренняя мощность . Она недоступна для использования и поэтому составляет потери мощности источника

Полная мощность источника тока Р есть сумма этих двух слагаемых,

Как видно из определений (2,3,4), каждая из мощностей зависит и от протекающего тока и от сопротивления соответствующей части цепи. Рассмотрим эту зависимость по отдельности.

Зависимость мощности P e , P i , P от тока нагрузки.

С учетом закона Ома (1) полную мощность можно записать так:

Таким образом, полная мощность источника прямо пропорциональна потребляемому току.

Мощность, выделяющаяся на нагрузке ( внешняя), есть

Она равна нулю в двух случаях:

1) I = 0 и 2) E – Ir = 0 . (7)

Первое условие справедливо для разомкнутой цепи, когда R  , второе соответствует так называемому короткому замыканию источника, когда сопротивление внешней цепи R = 0 . При этом ток в цепи (см. формулу (1)) достигает наибольшего значения – тока короткого замыкания .

При этом токе полная мощность становится наибольшей

Р нб = EI кз =Е 2 / r . (9)

Однако вся она выделяется внутри источника .

Выясним, при каких условиях внешняя мощность становится макси-мальной . Зависимость мощности P e от тока является (см. формулу (6)) параболической :

Положение максимума функции определим из условия:

dP e /dI = 0, dP e /dI = E – 2Ir.

Полезная мощность достигает максимального значения при токе

что составляет половину тока короткого замыкания (8), (см. рис. 2):

Внешняя мощность при этом токе составляет

т.е. максимальная внешняя мощность составляет четвертую часть наибольшей полной мощности источника.

Мощность, выделяющаяся на внутреннем сопротивлении при токе I max , определяется следующим образом:

т.е. составляет тоже одну четверть наибольшей полной мощности источника тока. Заметим, что при токе I max

Когда ток в цепи стремится к наибольшему значению I кз , внутренняя мощность

т.е. равна наибольшей мощности источника (9). Это означает, что вся мощность источника выделяется на его внутреннем сопротивлении, что, разумеется , вредно с точки зрения сохранности источника тока.

Характерные точки графика зависимости P e = P e ( I ) показаны на рис. 2.

Эффективность работы источника тока оценивается его коэффициентом полезного действия . КПД есть отношение полезной мощности к полной мощности источника:

Используя формулу (6), выражение для КПД можно записать следующим образом:

Из формулы (1) видно, что E – Ir = IR есть напряжение U на внешнем сопротивлении. Следовательно, КПД

Из выражения (15) также следует, что

т.е. КПД источника зависит от тока в цепи и стремится к наибольшему значению, равному единице, при токе I  0 (рис.3) . С увеличением силы тока КПД уменьшается по линейному закону и обращается в нуль при коротком замыкании, когда ток в цепи становится наибольшим I кз = E / r .

Из параболического характера зависимости внешней мощности от тока (6) следует, что одна и та же мощность на нагрузке P e может быть получена при двух различных значениях тока в цепи. Из формулы (17) и из графика (рис.3) видно, что с целью получения от источника большего КПД предпочтительна работа при меньших токах нагрузки, там этот коэффициент выше.

2.Зависимость мощности P e , P i , P от сопротивления нагрузки.

Рассмотрим зависимость полной, полезной и внутренней мощности от внешнего сопротивления R в цепи источника с ЭДС Е и внутренним сопротивлением r .

Полная мощность, развиваемая источником, может быть записана следующим образом, если в формулу (5) подставить выражение для тока (1):

Так полная мощность зависит от сопротивления нагрузки R . Она наибольшая при коротком замыкании цепи, когда сопротивление нагрузки обращается в нуль (9). С ростом сопротивления нагрузки R полная мощность уменьшается, стремясь к нулю при R   .

Читайте также:  Как бьют быков током

На внешнем сопротивлении выделяется

Внешняя мощность Р е составляет часть полной мощности Р и ее величина зависит от отношения сопротивлений R /( R + r ) . При коротком замыкании внешняя мощность равна нулю. При увеличении сопротивления R она сначала увеличивается. При R  r внешняя мощность по величине стремится к полной. Но сама полезная мощность при этом становится малой, так как уменьшается полная мощность (см. формулу 18). При R  внешняя мощность стремятся к нулю как и полная.

Каково должно быть сопротивление нагрузки, чтобы получить от данного источника максимальную внешнюю (полезную) мощность (19)?

Найдем максимум этой функции из условия:

Решая это уравнение, получаем R max = r .

Таким образом, во внешней цепи выделяется максимальная мощность, если ее сопротивление равно внутреннему сопротивлению источника тока. При этом условии ток в цепи равен E /2 r , т.е. половине тока короткого замыкания (8). Максимальная полезная мощность при таком сопротивлении

что совпадает с тем, что было получено выше (12).

Мощность, выделяющаяся на внутреннем сопротивлении источника

При R  P i  P , а при R =0 достигает наибольшей величины P i нб = P нб = E 2 / r . При R = r внутренняя мощность составляет половину полной, P i = P /2 . При R  r она уменьшается почти так же, как и полная (18).

Зависимость КПД от сопротивления внешней части цепи выражается следующим образом:

Из полученной формулы вытекает, что КПД стремится к нулю при приближении сопротивления нагрузки к нулю, и КПД стремится к наибольшему значению, равному единице, при возрастании сопротивления нагрузки до R  r . Но полезная мощность при этом уменьшается почти как 1/ R (см. формулу 19).

Мощность Р е достигает максимального значения при R max = r , КПД при этом равен, согласно формуле (23),  = r /( r + r ) = 1/2. Таким образом, условие получения максимальной полезной мощности не совпадает с условием получения наибольшего КПД.

Наиболее важным результатом проведенного рассмотрения является оптимальное согласование параметров источника с характером нагрузки. Здесь можно выделить три области: 1) R  r , 2) R  r , 3) R  r . Первый случай имеет место там, где от источника требуется малая мощность в течение длительного времени, например, в электронных часах, микрокалькуляторах. Размеры таких источников малы, запас электрической энергии в них небольшой, она должна расходоваться экономно, поэтому они должны работать с высоким КПД.

Второй случай – короткое замыкание в нагрузке, при котором вся мощность источника выделяется в нем и проводах, соединяющих источник с нагрузкой. Это приводит к их чрезмерному нагреванию и является довольно распространенной причиной возгораний и пожаров. Поэтому короткое замыкание источников тока большой мощности (динамо-машины, аккумуляторные батареи, выпрямители) крайне опасно.

В третьем случае от источника хотят получить максимальную мощность хотя бы на короткое время, например, при запуске двигателя автомобиля с помощью электростартера, величина КПД при этом не так уж важна. Стартер включается на короткое время. Длительная эксплуатация источника в таком режиме практически недопустима, так как она приводит к быстрому разряду автомобильного аккумулятора, его перегреву и прочим неприятностям.

Для обеспечения работы химических источников тока в нужном режиме их соединяют между собой определенным образом в так называемые батареи. Элементы в батарее могут соединяться последовательно, параллельно и по смешанной схеме. Та или иная схема соединения определяется сопротивлением нагрузки и величиной потребляемого тока.

Важнейшим эксплуатационным требованием к энергетическим установкам является высокий КПД их работы. Из формулы (23 ) видно, что КПД стремится к единице, если внутреннее сопротивление источника тока мало по сравнению с сопротивлением нагрузки

Параллельно можно соединять элементы, имеющие одинаковые ЭДС. Если соединено n одинаковых элементов, то от такой батареи можно получить ток

Здесь r 1 – сопротивление одного элемента, Е 1 – ЭДС одного элемента.

Такое соединение выгодно применять при низкоомной нагрузке, т.е. при R  r . Так как общее внутреннее сопротивление батареи при параллельном соединении уменьшается в n раз по сравнению с сопротивлением одного элемента, то его можно сделать близким сопротивлению нагрузки. Благодаря этому увеличивается КПД источника. Возрастает в n раз и энергетическая емкость батареи элементов.

Если нагрузка высокоомная, т.е. R  r , то выгоднее соединять элементы в батарею последовательно. При этом ЭДС батареи будет в n раз больше ЭДС одного элемента и от источника можно получить необходимый ток

Целью данной лабораторной работы является экспериментальная проверка полученных выше теоретических результатов о зависимости полной, внутренней и внешней (полезной) мощности и КПД источника как от силы потребляемого тока, так и от сопротивления нагрузки.

Описание установки. Для исследования рабочих характеристик источника тока применяется электрическая цепь, схема которой показана на рис. 4. В качестве источника тока используются два щелочных аккумулятора НКН-45, которые соединяются последователь-но в одну батарею через резистор r , моделирующий внутреннее сопро-тивление источника.

Его включение искусственно увеличивает внутреннее сопротивление аккуму-ляторов, что 1)защищает их от перегрузки при переходе в режим короткого замыкания и 2)дает возможность изменять внутреннее сопротивление источника по желанию экспериментатора. В качестве нагрузки (внешнего сопротивления цепи) п рименяются два переменных резистора R 1 и R 2 . (один грубой регулировки, другой – тонкой), что обеспечивает плавное регулирование тока в широком диапазоне.

Все приборы смонтированы на лабораторной панели. Резисторы закреплены под панелью, наверх выведены их ручки управления и клеммы, около которых имеются соответствующие надписи.

Измерения. 1.Установите переключатель П в нейтральное положение, выключатель Вк разомкните. Ручки резисторов поверните против часовой стрелки до упора ( это соответствует наибольшему сопротивлению нагрузки).

Соберите электрическую цепь по схеме (рис. 4), не присоединяя пока источники тока.

После проверки собранной цепи преподавателем или лаборантом присоедините аккумуляторы Е 1 и Е 2 , соблюдая полярность.

Установите ток короткого замыкания. Для этого поставьте переключатель П в положение 2 (внешнее сопротивление равно нулю) и с помощью резистора r установите стрелку миллиамперметра на предельное (правое крайнее) деление шкалы прибора – 75 или 150 мА. Благодаря резистору r в лабораторной установке есть возможность регулировать внутреннее сопротивление источника тока. На самом деле внутреннее сопротивление – величина постоянная для данного типа источников и изменить его невозможно.

Поставьте переключатель П в положение 1 , включив тем самым внешнее сопротивление (нагрузку) R = R 1 + R 2 в цепь источника.

Изменяя ток в цепи через 5…10 мА от наибольшего до наименьшего значения с помощью резисторов R 1 и R 2 , запишите показания миллиамперметра и вольтметра (напряжение на нагрузке U ) в таблицу.

Поставьте переключатель П в нейтральное положение. В этом случае к источнику тока присоединен только вольтметр, который обладает довольно большим сопротивлением по сравнению с внутренним сопротивлением источника, поэтому показание вольтметра будет чуть-чуть меньше ЭДС источник. Поскольку у вас нет другой возможности определить ее точное значение, остается принять показание вольтметра за Е . (Подробнее об этом см. в лабораторной работе № 311).

Читайте также:  Ааб 3х95 1х35 допустимый ток

Источник



КПД источника тока

Для работы электронных и электрических устройств необходимо подключать их к источникам питания. Источники питания могут быть как стационарные, так и автономные. В качестве питающих устройств используются гальванические элементы или преобразователи электроэнергии. И те, и другие являются источниками тока или напряжения.

Источники электрического тока и напряжения

Что такое источник тока

Это устройство или элемент, в общем понимании – двухполюсник, у которого проходящий через него ток не зависит от величины напряжения на полюсах. Основные характеристики источника тока (ИТ):

  • величина;
  • внутренняя проводимость (импеданс).

Внутреннее сопротивление такого двухполюсника очень мало. У идеального источника (ИИТ) оно приближается к нулю.

Графическое обозначение и вольт-амперная характеристика (ВАХ) ИТ

Генераторы движения электронов могут быть как независимыми, так и зависимыми.

Первые представляют собой идеальный двухполюсник, с двумя зажимами. У них ток, движущийся от одного зажима к другому, не зависит от формы и величины разности потенциалов на зажимах. Его изменения происходят по своим законам.

Второй тип ИТ – идеальный двухполюсник, с двумя зажимами, у которого движение зарядов от одного зажима к другому зависит от формы и величины напряжения на этих зажимах.

Существует управляемый зависимый ИТ. Он представляет собой идеальный двухполюсник, имеющий 2 зажима на входе и 2 зажима на выходе. Его особенность в том, что выходное значение тока на выходе зависит от его величины на входе. В таком ИТ происходит усиление мощности. Изменяя нулевое значение мощности на его входе, управляют величину мощности на выходных зажимах.

Информация. Управление производителем энергии может осуществляться напряжением (ИТУН) или током (ИТУТ). Одни находят применение для полевых триодов и электровакуумных ламп, вторые – для транзисторов биполярного типа.

В реальности генераторы тока имеют определённые ограничения по напряжению. Они далеки от идеальных ИТ и создают движение электричества в таком интервале напряжений, где их верхняя граница зависит от Uпит ИТ. Следовательно, у реального источника тока есть существенные пределы по нагрузке.

КПД электрической цепи

Выполняя продвижения зарядов через замкнутую цепь, двухполюсник проделывает некоторую работу. Когда генератор двигает заряды по внешнему контуру цепи, то это полезная работа. Когда ИТ продвигает электрические носители по всей цепи, говорят о полной работе.

Внимание! В этой цепочке перемещения зарядов особое значение имеет КПД (коэффициент полезного действия) источника. Он равен соотношению сопротивлений внешней цепи и полному сопротивлению цепи.

Обращая внимание на КПД электроцепи, нужно отметить, что он напрямую зависит от физических величин, определяющих скорость передачи или трансформации электрической энергии. Одной из таких величин является мощность Р (Вт).

Формулы мощности:

P = U * I = U2/R = I2 * R,

где:

  • U – напряжение на нагрузке, В;
  • I – ток, А;
  • R – сопротивление нагрузки, Ом.

Для разных цепей значения напряжения и сила тока различаются, следовательно, производимая ими работа будет разной. Когда предстоит оценить скорость передачи и преобразования электрического тока, то обращают внимание на Р. Она соответствует работе, проделанной за единицу времени:

где:

  • P – мощность, Вт;
  • A – работа, Дж;
  • ∆t – временной интервал, с.

Исходя из этой формулы, чтобы найти работу А, нужно умножить Р на время:

Чтобы найти КПД (η) электроцепи, нужно найти отношение полезно потраченной энергии к количеству всей энергии, поданной в цепь. Формула для расчёта:

где:

  • А – проделанная потребителем работа, Дж;
  • Q – количество энергии, взятой от источника, Дж.

Важно! КПД не может быть выше единицы. В основном он или равен ей, или меньше её. Этому причина – Закон сохранения энергии. Согласно ему, полезная совершённая работа никогда не превысит затраты энергии, необходимые для её выполнения.

Наглядно это можно объяснить на примере электрической цепи, в которую включен проводник, имеющий определённое сопротивление. При прохождении электричества через цепь часть энергии будет рассеиваться на проводнике, превращаясь в тепло и нагревая его. Потери мощности будут зависеть от величины этого сопротивления.

КПД электрической цепи

Что такое КПД ИТ

Когда речь идёт о кпд источника тока, также рассматривают полезную и полную работу, совершаемую двухполюсником. Перемещая электроны во внешней цепи, он выполняет полезную работу, двигая их по всей цепи, включая и свою внутреннюю, он производит полную работу.

В виде формул это выглядит так:

  • А полезн. = q*U = I*U*t = I2*R*t;
  • А полн. = q*ε = I* ε*t = I2*(R+r)*t.

где:

  • q – количество энергии, Дж;
  • U – напряжение, В;
  • ε – ЭДС, В;
  • I – ток, А;
  • R – сопротивление нагрузки, Ом;
  • r – импеданс источника, Ом;
  • t – время, за которое совершается работа, с.

С учётом этого можно выразить мощности двухполюсника:

  • Р полезн. = А полезн./t = I*U = I2*R;
  • P полн. = А полн./t = I*ε = I2*(R+r).

Формула кпд источников тока имеет вид:

η = Р полезн./P полн.= U/ε = R/ R+r.

Исследование мощности и КПД генератора тока

Максимальная полезная Pmax и максимальный КПДmax – несовместимые понятия. Нельзя добиться максимального КПД источника при максимальной мощности. Это обусловлено тем, что Р, отдаваемая двухполюсником, достигнет своего максимального значения только при условии согласования сопротивления нагрузки и внутреннего импеданса ИТ:

В этом случае КПД источника будет:

η = R/ R+r = r/ r+r = 1/2, что составляет всего 50%.

Для согласования двухполюсника и нагрузки применяют электронные схемы или согласующие блоки, для того чтобы добиться максимального отбора мощности от источника.

Мощность ИТ и внутреннее сопротивление

Можно собрать последовательную схему, в которую войдут гальванический двухполюсник и сопротивление нагрузки. Двухполюсник, имеющий внутренний импеданс r и ЭДС – Е, отдаёт на внешнюю нагрузку R ток I. Задача цепи – питание электричеством активной нагрузки, выполняющей полезную работу. В качестве нагрузки может быть применена лампочка или обогреватель.

Простая схема для исследования зависимости Рполезн. от R

Рассматривая эту цепь, можно определиться с зависимостью полезной мощности от величины сопротивления. Для начала находят R-эквивалентное всей цепи.

Оно выглядит так:

Движение электричества в цепи находится по формуле:

В таком случае Р ЭДС на выходе составит Рвых. = E*I = E²/(R + r).

Далее можно найти Р, рассеиваемую при нагреве генератора из-за внутреннего сопротивления:

Pr = I² * r = E² * r/(R + r)².

На следующем этапе определяются с мощностью, отбираемой нагрузкой:

PR = I² * R = E² * R/(R + r)².

Общая Р на выходе двухполюсника будет равна сумме:

Это значит, что потери энергии изначально происходят при рассеивании на импедансе (внутреннем сопротивлении) двухполюсника.

Далее, чтобы увидеть, при какой величине нагрузки достигается максимальная величина полезной мощности Рполезн., строят график.

При его рассмотрении видно, что самое большое значение мощности – в точке, где R и r сравнялись. Это точка согласования сопротивлений генератора и нагрузки.

Внимание! Когда R > r, то ток, возникающий в цепи, мал для передачи энергии нагрузке с достаточной скоростью. При R Видео

Источник