Меню

Коэффициент пускового тока циркуляционного насоса

Подобрать стабилизатор напряжения для насоса

Ответ: картинка скважинный насос
Не простой вопрос при выборе стабилизатора напряжения для скважинного погружного насоса или циркуляционного насоса отопления.

картинка реле напряжение или стабилизатор для насоса

Содержание:

  1. Чем опасно нестабильное напряжение.
  2. Как подобрать мощность стабилизатора.
  3. Пример расчета мощности .
  4. Типы стабилизаторов для насоса.
  5. Ошибки при выборе стабилизатора для насоса.


Первый вопрос, а нужен ли стабилизатор для насоса или можно обойтись защитным реле? Конечно нужен для бесперебойной подачи воды! Во первых при изменениях в напряжении, насос не будет отключатся, а будет продолжать работать даже при низком напряжении в сети, тогда как реле просто отключит насос и лишит вас воды.

Как влияет не правильное (нестабильное) напряжение на работу насосного оборудования?

Изменение качества тока, которое измеряется у нас напряжением и частотой, может привести неправильной работе насоса. В российских электросетях частота является достаточно стабильной величиной и в корректировке обычно не нуждается.

Однако напряжение сетях как говорится, желает лучшего. Пониженное напряжение создает повышенные нагрузки на электродвигатель и механическую часть водяного насоса, что приводит низкому давлению подаваемой воды и даже может привести выходу из строя самого электродвигателя, падает ресурс электронасоса. Так как при пониженном напряжении падает производительность, насосу для подачи заданного объема воды потребуется большее количество электроэнергии, что приводит перерасходу электрической энергии и переплатам.

Повышенное напряжение тоже опасно для электродвигателя, перенапряжение может, просто напросто привести к выходу из строя дорогостоящего оборудования.

Для того что бы понять какой стабилизатор для насоса вам нужен.

  1. В первую очередь нужно сориентироваться по мощности насоса.
  2. Во вторых нужно учесть пусковую мощность.

У разных насосов, различная мощность и различные пусковые токи, которые тоже могут существенно отличаться в зависимости от конструкции насоса и его производителя, что в первую очередь влияет на выбор прибора и самое главное, на его цену.

Таблица с подобранными мощностями стабилизаторов ,
под мощность насоса.( при клике на указанную мощность
вы попадете на страницу с подобранными стабилизаторами)
Мощность насоса, Вт Мощность стабилизатора
300 1000 ВА
500-700 2000 ВА
900 3000 ВА
1200-1500 5000 ВА
1600-2000 6000 ВА
2100 7000 ВА

Есть и меньше, например.

Какой стабилизатор напряжения подойдет для скважинного насоса Грундфос 800 Вт. Практически у всех насосов этого производителя пусковой коэффициент 1,8 т.е. если мощность, к примеру 0,8 кВт, то понадобится стабилизатор мощностью 1,44 кВт, это будет 2 кВА.
Подойдут такие стабилизаторы, смотрите подборку на мощность от 2 до 3 кВА.

Скважинные насосы обычно имеют высокие пусковые токи, и это связано не только с мощностью, но и с глубиной размещения, длинной трубы, и есть ли гидроаккумулятор в системе водоснабжения. В случае если у вас сложная система водоснабжения, то лучше взять еще запас к мощности.

Один из вариантов для такого насоса, стабилизатор LIDER PS 3000 W-15 или ШТИЛЬ инстаб IS 3500 инверторного типа.

циркуляционный насос как узнать мощностьЧто же касается насосов отопления, то подбор тоже зависит от мощности и пусковых токов. И как правило информацию можно найти на шильдике, хотя в наше время, не все производители пишут эту информацию на самих насосах. Вот пример от Grundfos.

таблица мощности
циркуляционных насосов
I-ток (А) P- (V)
мощность Вт
0.17 40
0.28 65
0.42 95

Если у вас возникли затруднения, то конечно лучше доверить выбор специалистам, чтобы купить, на 100% подходящий вам стабилизатор для насоса.

Телефон для консультации.

На самом деле проблемы с работой электрооборудования могут возникать по многим причинам, и наши инженеры имеют огромный опыт по решению и устранению проблем с электропитанием.

В большинстве современных частных домов и дач, управление и питание водяных насосов расположены в (котельной) и их удобнее и экономически выгоднее стабилизировать все, вместе с котельным оборудованием, что в общем то будет дешевле.

Какой тип стабилизатора будет оптимальным для насосов.

Настоящее время на рынке присутствует большое количество стабилизаторов с разной схемотехникой работы. Их можно разделить на основные несколько типов.

  • Электромеханические стабилизаторы можно разделить на две подгруппы, сервоприводные, и релейные ступенчатого типа. Релейные стабилизаторы являются на данный момент самыми недорогими, но и надежность таких стабилизаторов невысока. Поэтому они и являются наиболее распространёнными. Но их подвижные части всегда требуют постоянного контроля и технического обслуживания, что доставляет дополнительные заботы. Сервоприводные кроме плавности регулировки напряжения, других плюсов не имеют.

  • К следующим за ними можно отнести электронные тиристорные, ступенчатого типа регулирования, такая схемотехника используется достаточно давно и зарекомендовала себя как особо надежная, отработанная за долгие годы конструкция и комплектующие. Позволили производителям давать гарантию в 5 лет.
Читайте также:  Ток холостого хода трансформатора по фазам

  • К новинкам среди стабилизаторов напряжения можно отнести стабилизаторы инверторного типа. В последнее время цена igbt транзисторов, на которых построена электрическая схема приборов, стала намного ниже, в связи с этим такая конструкция стала и более доступной по цене. Работы этих нормализаторов основана на высокочастотном преобразовании, что позволяет сэкономить на трансформаторе(меди), потому и вес у них серьезно отличается от конкурентов. Из плюсов, плавная регулировка напряжение на выходе. Из минусов высокочастотный шум.

  • К следующему типу можно отнести феррорезонансные стабилизаторы, которые в виду большой массы, шумности и цены, востребованы в настоящее время только на производстве. Из плюсов высокая точность стабилизации и плавность работы. Из минусов большие габариты и стоимость.

  • В отдельный тип, я бы выделил еще уличный стабилизатор напряжения для насоса, который можно разместить прямо рядом со скважинной или колодцем, например закрепив на опоре. Или стабилизатор с большим диапазоном рабочих температур, от глубокого минуса до жары.

Видео тестирование стабилизатора с насосом.

Ошибки при выборе стабилизатора напряжения для насоса.

  • Одной из основных ошибок это неправильный выбор мощности, приобретённый стабилизатор напряжения неподходящей мощности для работы с насосом, это попросту выброшенные деньги. Поэтому рекомендуем отнестись к этому вопросу с особой тщательностью.

  • К второй ошибке можно отнести незнание пусковых токов при запуске насоса, или пренебрежение ими. Незнание этих параметров может не только привести к покупке неподходящего по мощности стабилизатора, который ну вас просто не будет работать, но и при обретению заведомо слишком мощного прибора для стабилизации напряжения, а это излишне потраченные деньги.
  • Ещё одной ошибкой можно назвать выбор некачественного оборудования, например дешевых стабилизаторов китайского производства. Некоторые из производителей, не буду точно называть бренды, устанавливает индикацию выходного напряжения на постоянное отображение значений в 220 вольт, хотя на самом деле это далеко не так! К тому же будьте осторожны при выборе дешёвые механики, есть прецеденты заклинивших механизмов, залипания контактов, которые привели к аварийному превышению выходного напряжения и даже возгоранию.

Источник

Как выбрать ИБП для циркуляционного насоса

Для организации непрерывной работы циркуляционного насоса используются источники бесперебойного питания:

Комплект ИБП с внешним аккумулятором для циркуляционного насоса отопления

  1. с чистой синусоидой
    В состав циркуляционных насосов входит электромотор, для его питания можно использовать только чистую синусоиду, аппроксимированная не годится.
  2. работающие с внешним комплектом аккумуляторных батарей
    При защите циркуляционного насоса требуется длительное время автономной работы. Наиболее рационально такую задачу решать, используя ИБП с внешним комплектом аккумуляторов.

Параметры, учитываемые при выборе бесперебойника для насоса отопления

Необходимо учитывать следующие параметры насоса:

  • номинальную мощность,
  • пусковую мощность (мощность, потребляемую в момент его включения),
  • желательное время автономной работы (предположительное время отсутствия сетевого энергопитания).

Достаточно легко определяется номинальная мощность — она всегда есть в технической документации к насосу, и можно просто сориентироваться по требуемому времени автономии — это длительность отключения подачи энергии в вашей местности плюс некоторый запас времени на всякий случай. Оба этих параметра будут влиять на емкость, а значит и стоимость, подключаемых к ИБП аккумуляторов.

Пусковая мощность насоса зависит от его класса энергоэффективности

От пусковой мощности зависит выбор источника бесперебойного питания, она определяет необходимую мощность устройства. Большая часть производителей не указывает эту характеристику в документации, поэтому определяем ее, исходя из класса энергоэффективности.

Если у насоса А класс, считаем пусковую мощность с коэффициентом 1,3 от номинальной. Если класс энергоэффективности ниже или неизвестен – применяем коэффициент 5. Если проигнорировать пусковой режим насоса, то требуемая для его включения мощность окажется больше мощности ИБП даже с учетом его перегрузочных способностей, и это приведет к его выключению «по перегрузу».

Алгоритм выбора источника аварийного питания для насоса

  1. По документации на насос смотрим его максимальный режим потребления. Даже если он сейчас установлен не на самом высоком уровне, совсем не факт, что его не придется установить на максимум в будущем.
    Например, Grundfos UPS 25-40 180 может использоваться в 3-х режимах: 25, 35 и 45 Вт. Для определения необходимой мощности ИБП используем 45 Вт.
  2. Учитываем пусковые токи насоса, т.е. увеличение мощности в момент включения. При условии, что в системе используется не один насос, максимальную мощность системы надо считать как сумму пусковых мощностей всех используемых насосов. Например, про уже упомянутый циркуляционный насос Grundfos UPS 25-40 180 известно, что он принадлежит к B классу энергоэффективности. Соответственно, в момент включения он потребует 45 Вт * 5 = 225 Вт.
  3. Учитываем запас по мощности в 15-20 %. Т.е. искомая предварительная цифра: 225 Вт * 1,2 = 270 Вт.
  4. Из имеющегося ряда подходящих ИБП выбираем тот, мощность которого максимально близка к полученной цифре, но не меньше ее.
    В нашем случае подойдет бесперебойник с мощностью 300 Вт. Понимаем, что «повесить» на него что-то еще из электроприборов уже не получится.
  5. Далее необходимо выбрать внешние аккумуляторы, исходя из номинальной мощности насоса и требуемого времени автономии (в связи с краткостью пусковых режимов, их мощность не учитывается). Если известна периодичность работы насоса, например, он работает 40 минут в час и этого достаточно для поддержания комфортного тепла в доме, можем учесть и это обстоятельство. Только нужно не забыть, что такой учет возможен для самой низкой возможной температуры в вашей местности. Учесть этот фактор мы сможем пересчетом времени автономной номинальной мощности с коэффициентом 2/3 (40/60 минут).

Читайте также:  Единица измерения мощности электрического тока может быть выражена следующим образом

Разные модели ИБП одинаковой мощности имеют каждый свое количество аккумуляторов в батарейном комплекте, поэтому приходится, если вариантов несколько, просчитывать каждый из них отдельно. Проще всего подбор батарейного комплекта сделать при помощи консультанта, но примерно можно сориентироваться и самостоятельно по таблицам автономии, приведенным в описании каждого ИБП у нас на сайте.

Примеры расчета мощности и выбора ИБП для циркуляционных насосов

Рассчитаем несколько вариантов для насосов:

Grundfos Alpha2 L 32-60 Grundfos UPS 32-60/th>

Wilo Star RS15/6-130 UNIPUMP UPC32-60
Насос Grundfos Alpha2 L 32-60 Насос Grundfos UPS 32-60 Насос Wilo Star RS15/6-130 Насос UNIPUMP UPC32-60

Считаем, что перед нами поставлена задача подобрать комплекты под два варианта времени автономной работы: 6-8 и 14-16 часов при непрерывной работе насоса.

Источник

Какой запас по мощности должен иметь выбранный ИБП? Пусковые токи насосов.

Запас по мощности ИБП для котельной напрямую влияет на надежность системы бесперебойного электропитания отопления дома.

Основным уязвимом местом и является выходной блок бесперебойника, т.к. через него и осуществляется питание всего котла. Циркуляционные насосы в составе любой современной системы отопления, это основные мощные потребители электроэнергии и их мощность влияет на мощность применяемого ИБП. В штатном режиме насосы потребляют свою заявленную в паспорте номинальную мощность, Однако необходимо учитывать их стартовую мощность. Это мощность с момента подачи питания до момента выхода на их штатный режим. Обычно это не более 2-5 секунд. В этот малый промежуток времени потребляемый ток от ИБП существенно выше, чем штатный. А чем выше потребляемый ток, тем соответственно выше и потребляемая мощность насоса. Мощность — это произведение величин тока и напряжения. Например насос мощностью 60 Вт в штатном режиме потребляет ток 0,273 Ампера, а при разгоне (включении) сила броска тока может достигать 0,8 ампер, т.е. в три раза. Соответственно и мощность в этот момент 220*0,8=176 Вт. Многие современные насосы имеют в своем составе систему плавного пуска, для облегчения первоначальной нагрузки на узлы, такие насосы предпочтительнее устанавливать и со стороны выбираемого в будущем ИБП. У каждого ИБП есть параметр перегрузочная способность 20-30% от номинала, это способность не отключиться при кратковременных пиках нагрузки, однако трехкратное превышение допустимой мощности покрывает такую способность. В системах отопления где стоит не один насос, а 3-4 штуки и в момент включения они запускаются одновременно, то путем не сложных математических расчетов получается перегрузка на 464 Вт! Таким образом, бесперебойник, питающий такую нагрузку должен выдерживать 176*4=700 Вт. В любом паспорте на ИБП есть две характеристики номинальная (долговременная) мощность и максимальная (пиковая). Пожалуйста обязательно перед выбором и покупкой внимательно прочтите и сопоставьте мощность Вашей системы и ИБП.

На величину запаса по мощность ИБП должен влиять и фактор наращивания количества насосов в котельной. В случае, если Вы захотите увеличить площадь обогреваемую котлом, Вам придется устанавливать и дополнительный насос, а дополнительный насос — это еще один потребитель электричества, т.е. увеличивается мощность системы.

график зависимости мощности от входного напряжения ибп

В случае применения ИБП линейно-интерактивного построения, необходимо учитывать характеристики встроенного в них корректора напряжения. Особенность этих корректоров (AVR) или как их красиво, но не совсем правильно называют — стабилизаторов напряжения, является снижение номинальной мощности при входном напряжении менее 180-190 вольт. В паспортах и инструкциях по эксплуатации этот факт вообще часто не указан. Но законы электротехники невозможно обойти законами маркетинга! А результат — остановка котла при заниженном входном питании из-за неверного выбора ИБП по мощности. Дело в том, что трансформатор внутри ИБП при входном пониженном напряжении, корректируя (повышая) на своем выходе уровень напряжения до 220 вольт — уже не способен работать на 100% своей расчетной мощности и при 150 вольт на входе способен «отдать в нагрузку» только 50-60% своей номинальной мощности. Если Ваша сеть отличается частыми и длительными понижениями напряжения- то запас по мощности должен быть плюс 50%. Другими словами, если нагрузка 250 Вт, то необходим ИБП на 500 Вт номинальных, а не максимальных. Тогда можно говорить о надежности системы.

Пример: ИБП Энергия ПН-500. Номинальная мощность 230 Вт. Максимальная 350 Вт. Может использоваться для насосов мощностью до 120 Вт. При условии входного напряжения в диапазоне от 180-250 Вольт.

Источник



Пусковые токи двигателей скважинных насосов

Пусковой ток скважинного насоса

Расчет системы питания любого погружного насоса должен включать в себя поправку на его пусковой ток. По разной документации, встречающейся в сети, пусковой ток принимают равным рабочему току насоса, увеличенному в 3-7 раз . Встречается упоминание даже 9-кратного множителя.

Давайте разберемся, от чего зависит величина пускового тока. В первую очередь, конечно — от модели двигателя. Чем больше и мощнее двигатель, тем более сильный инерционный момент его ротора , тем больше энергии нужно для его раскрутки. Поэтому расчетный множитель тока при пуске растет с 3 при полукиловатных двигателях до 4 для двигателей мощностью два киловатта.

Нагрузка на двигатель в момент его запуска тоже играет далеко не последнюю роль — свободно вращающийся ротор в насосе обеспечит при пуске меньший ток, чем нагруженный многометровым столбом воды в водопроводной магистрали.

Таблица множителей для пусковых токов насосов Grundfos SP

В таблице дана зависимость рабочего In тока в амперах и множителя для пускового тока Ist/In от мощности P2 для однофазных и трехфазных двигателей Grundfos линейки SP. Действующее время разгона — 0.1 секунды.

P2 kWt In, A (1×230) Ist/In (1×230) In, A (3×400) Ist/In (3×400)
0.37 3.95 3.4 1.40 3.7
0.55 5.80 3.5 2.20 3.5
0.75 7.45 3.6 2.30 4.7
1.1 7.30 4.3 3.40 4.6
1.5 10.2 3.9 4.20 5.0
2.2 14.0 4.4 5.50 4,7

Пусть Вас не удивляет несоответствие потребляемого двигателем тока в таблице и мощности в киловаттах — производители двигателей для насосов дают в характеристиках мощность на валу двигателя, а она зависит от КПД и меньше потребляемой им электрической мощности. А сила тока приводится для двигателя при полной нагрузке.

Ограничение по количеству включений насоса в час связано с большим выделением тепла на обмотках двигателя пусковым током. При слишком частых включениях обмотки перегреются.

Слишком сильный перегрев обмоток приводит к потере изоляционных свойств лака, которым покрыты витки, межвитковому замыканию и выходу двигателя насоса из строя.

Побочные эффекты

При тяжелом режиме работы двигателя (большая высота напора, забит впускной фильтр, отложения в водопроводе, износ узлов насоса) величина и продолжительность пускового тока могут быть значительно больше расчетных.

Во время действия пускового тока увеличивается падение напряжения на кабеле питания насоса. Правила IES 3-64 допускают падение не более 4% от входящего напряжения.

Борьба с пусковым током

Прямой пуск от сети является самым простым и дешевым решением, но большой пусковой ток накладывает ограничения на его использование. Чтобы избавиться от этого недостатка, применяют другие способы:

1. Устройство плавного пуска — это наиболее эффективный метод уменьшения величины пускового тока. Один из его главных недостатков — большая стоимость преобразователя.

Для насосов Grundfos SQ и SQE нет ограничений по количеству запусков в час, потому что преобразователь частоты и устройство плавного пуска уже встроены в корпус двигателя.

Упрощенно работа УПП заключается в плавном наращивании напряжения на двигателе в течении 2-х секунд. За это время ротор успевает раскрутиться до необходимых оборотов, не увеличивая нагрузку на сеть.

Двигатель Grundfos в разрезе

2. Последовательное включение через трансформатор с несколькими обмотками. Для насосов обычно применяется 1 — 2 секции, которые ограничивают ток при включении, а по мере набора насосом оборотов по очереди выводятся из цепи. Первоначальное снижение напряжения происходит максимум до 50% от напряжения питания.

3. Для трехфазных двигателей насосов мощностью более 3 киловатт можно применить схему пуска с переключением со звезды на треугольник . В момент пуска двигатель включается по схеме «звезда», дающая снижение пускового тока в 3 раза, и лишь после разгона двигателя соединение переключается по схеме «треугольник».

Источник