Меню

Коэффициент электродинамической стойкости трансформатора тока

Правильный выбор трансформатора тока по ГОСТу

Задача данной статьи дать начальные знания о том, как выбрать трансформатор тока для цепей учета или релейной защиты, а также родить вопросы, самостоятельное решение которых увеличит ваш инженерный навык.

В ходе подбора ТТ я буду ссылаться на два документа. ГОСТ-7746-2015 поможет в выборе стандартных значений токов, мощностей, напряжений, которые можно принимать для выбора ТТ. Данный ГОСТ действует на все электромеханические трансформаторы тока напряжением от 0,66кВ до 750кВ. Не распространяется стандарт на ТТ нулевой последовательности, лабораторные, суммирующие, блокирующие и насыщающие.

Кроме ГОСТа пригодится и ПУЭ, где обозначены требования к трансформаторам тока в цепях учета, даны рекомендации по выбору.

Выбор номинальных параметров трансформаторов тока

До определения номинальных параметров и их проверки на различные условия, необходимо выбрать тип ТТ, его схему и вариант исполнения. Общими, в любом случае, будут номинальные параметры. Разниться будут некоторые критерии выбора, о которых ниже.

1. Номинальное рабочее напряжение ТТ. Данная величина должна быть больше или равна номинальному напряжению электроустановки, где требуется установить трансформатор тока. Выбирается из стандартного ряда, кВ: 0,66, 3, 6, 10, 15, 20, 24, 27, 35, 110, 150, 220, 330, 750.

2. Далее, перед нами встает вопрос выбора первичного тока ТТ. Величина данного тока должна быть больше значения номинального тока электрооборудования, где монтируется ТТ, но с учетом перегрузочной способности.

Приведем пример из книги. Допустим у статора ТГ ток рабочий 5600А. Но мы не можем взять ТТ на 6000А, так как турбогенератор может работать с перегрузкой в 10%. Значит ток на генераторе будет 5600+560=6160. А это значение мы не замерим через ТТ на 6000А.

Выходит необходимо будет взять следующее значение из ряда токов по ГОСТу. Приведу этот ряд: 1, 5, 10, 15, 20, 30, 40, 50, 75, 80, 100, 150, 200, 300, 400, 500, 600, 750, 800, 1000, 1200, 1500, 1600, 2000, 3000, 4000, 5000, 6000, 8000, 10000, 12000, 14000, 16000, 18000, 20000, 25000, 28000, 30000, 32000, 35000, 40000. После 6000 идет 8000. Однако, некоторое электрооборудование не допускает работу с перегрузкой. И для него величина тока будет равна номинальному току.

Но на этом выбор первичного тока не заканчивается, так как дальше идет проверка на термическую и электродинамическую стойкость при коротких замыканиях.

2.1 Проверка первичного тока на термическую стойкость производится по формуле:

Формула проверки первичного тока ТТ на термическую устойчивость

Данная проверка показывает, что ТТ выдержит определенную величину тока КЗ (IТ) на протяжении определенного промежутка времени (tt), и при этом температура ТТ не превысит допустимых норм. Или говоря короче, тепловое воздействие тока короткого замыкания.

iуд — ударный ток короткого замыкания

kу — ударный коэффициент, равный отношению ударного тока КЗ iуд к амплитуде периодической составляющей. При к.з. в установках выше 1кВ ударный коэффициент равен 1,8; при к.з. в ЭУ до 1кВ и некоторых других случаях — 1,3.

2.2 Проверка первичного тока на электродинамическую стойкость:

Формула проверки первичного тока ТТ на динамическую устойчивость

В данной проверке мы исследуем процесс, когда от большого тока короткого замыкания происходит динамический удар, который может вывести из строя ТТ.

Для большей наглядности сведем данные для проверки первичного тока ТТ в небольшую табличку.

выбор первичного тока трансформатора тока по термической и электродинамической устойчивости

3. Третьим пунктом у нас будет проверка трансформатора тока по мощности вторичной нагрузки. Здесь важно, чтобы выполнялось условие Sном>=Sнагр. То есть номинальная вторичная мощность ТТ должна быть больше расчетной вторичной нагрузки.

Вторичная нагрузка представляет собой сумму сопротивлений включенных последовательно приборов, реле, проводов и контактов умноженную на квадрат тока вторичной обмотки ТТ (5, 2 или 1А, в зависимости от типа).

Величину данного сопротивления можно определить теоретически, или же, если установка действующая, замерить сопротивление методом вольтметра-амперметра, или имеющимся омметром.

Сопротивление приборов (амперметров, вольтметров), реле (РТ-40 или современных), счетчиков можно выцепить из паспортов, которые поставляются с новым оборудованием, или же в интернете на сайте завода. Если в паспорте указано не сопротивление, а мощность, то на помощь придет известный факт — полное сопротивление реле равно потребляемой мощности деленной на квадрат тока, при котором задана мощность.

Схемы включения ТТ и формулы определения сопротивления по вторичке при различных видах КЗ

Не всегда приборы подключены последовательно и это может вызвать трудности при определении величины вторичной нагрузки. Ниже на рисунке приведены варианты подключения нескольких трансформаторов тока и значение Zнагр при разных видах коротких замыканий (1ф, 2ф, 3ф — однофазное, двухфазное, трехфазное).

формулы определения сопротивления по низкой стороне ТТ при различных схемах подключения

zр — сопротивление реле

rпер — переходное сопротивление контактов

rпр — сопротивление проводов определяется как длина отнесенная на произведение удельной проводимости и сечения провода. Удельная проводимость меди — 57, алюминия — 34,5.

Кроме вышеописанных существуют дополнительные требования для ТТ РЗА и цепей учета — проверка на соблюдение ПУЭ и ГОСТа.

Выбор ТТ для релейной защиты

Трансформаторы тока для цепей релейной защиты исполняются с классами точности 5Р и 10Р. Должно выполняться требование, что погрешность ТТ (токовая или полная) не должна превышать 10%. Для отдельных видов защит эти десять процентов должны обеспечиваться вплоть до максимальных токов короткого замыкания. В отдельных случаях погрешность может быть больше 10% и специальными мероприятиями необходимо обеспечить правильное срабатывание защит. Подробнее в ПУЭ вашего региона и справочниках. Эта тема имеет множество нюансов и уточнений. Требования ГОСТа приведены в таблице:

значения погрешностей ТТ для цепей РЗА по ГОСТ-7746-2015

Хоть это и не самые высокие классы точности для нормальных режимов, но они и не должны быть такими, потому что РЗА работает в аварийных ситуациях, и задача релейки определить эту аварию (снижение напряжения, увеличение или уменьшение тока, частоты) и предотвратить — а для этого необходимо уметь измерить значение вне рабочего диапазона.

Выбор трансформаторов тока для цепей учета

К цепям учета подключаются трансформаторы тока класса не выше 0,5(S). Это обеспечивает бОльшую точность измерений. Однако, при возмущениях и авариях осциллограммы с цепей счетчиков могут показывать некорректные графики токов, напряжений (честное слово). Но это не страшно, так как эти аварии длятся недолго. Опаснее, если не соблюсти класс точности в цепях коммерческого учета, тогда за год набежит такая финансовая погрешность, что “мама не горюй”.

ТТ для учета могут иметь завышенные коэффициенты трансформации, но есть уточнение: при максимальной загрузке присоединения, вторичный ток трансформатора тока должен быть не менее 40% от максимального тока счетчика, а при минимальной — не менее 5%. Это требование п.1.5.17 ПУЭ7 допускается при завышенном коэффициенте трансформации. И уже на этом этапе можно запутаться, посчитав это требование как обязательное при проверке.

По требованиям же ГОСТ значение вторичной нагрузки для классов точности до единицы включительно должно находиться в диапазоне 25-100% от номинального значения.

Диапазоны по первичному и вторичному токам для разных классов точности должны соответствовать данным таблицы ниже:

значения погрешностей ТТ для цепей учета и измерения по ГОСТ-7746-2015

Исходя из вышеописанного можно составить таблицу для выбора коэффициента ТТ по мощности. Однако, если с вторичкой требования почти везде 25-100, то по первичке проверка может быть от 1% первичного тока до пяти, плюс проверка погрешностей. Поэтому тут одной таблицей сыт не будешь.

Таблица предварительного выбора трансформатора тока по мощности и току

предварительная таблица выбора ТТ по мощности

Пройдемся по столбцам: первый столбец это возможная полная мощность нагрузки в кВА (от 5 до 1000). Затем идут три столбца значений токов, соответствующих этим мощностям для трех классов напряжений — 0,4; 6,3; 10,5. И последние три столбца — это разброс возможных коэффициентов трансформаторов тока. Данные коэффициенты проверены по следующим условиям:

  • при 100%-ой нагрузке вторичный ток меньше 5А (ток счетчика) и больше 40% от 5А
  • при 25%-ой нагрузке вторичный ток больше 5% от 5А

Я рекомендую, если Вы расчетчик или студент, сделать свою табличку. А если Вы попали сюда случайно, то за Вас эти расчеты должны делать такие как мы — инженеры, электрики =)

Читайте также:  Зависимость силы тока от напряжения электрическое сопротивление проводников 8 класс тест ответы

К сведению тех, кто варится в теме. В последнее время заводы-изготовители предлагают следующую услугу: вы рассчитываете необходимые вам параметра тт, а они по этим параметрам создают модель и производят. Это выгодно, когда при выборе приходится варьировать коэффициент трансформации, длину проводов, что приводит и к удорожанию схемы и увеличению погрешностей. Некоторые изготовители даже пишут, что не сильно и дороже выходит, чем просто серийное производство, но выигрыш очевиден. Интересно, может кто сталкивался с подобным на практике.

Вот так выглядят основные моменты выбора трансформаторов тока. После выбора и монтажа, перед включением, наступает самый ответственный момент, а именно пусковые испытания и измерения.

Сохраните в закладки или поделитесь с друзьями

Источник

Выбор и проверка измерительных трансформаторов тока (TA)

Трансформаторы тока (ТТ) устанавливают во всех цепях (цепи генераторов, трансформаторов, линий и пр.). Состав измерительных приборы, подключаемых к ТТ зависит от конкретной цепи и выбирается согласно рекомендациям предыдущего раздела 13. В первую очередь это будут амперметры и приборы, для работы которых необходима информация о токе и напряжении: ваттметры, варметры, счетчики активной и реактивной энергии.

ТТ являются однофазными аппаратами и могут быть установлены в одну, две или три фазы, как это показано на рис. 14.1. Обычно в цепях 6 – 10 кВ ТТ устанавливают в двух фазах по схеме неполной звезды, при напряжении 35 кВ и выше – в трех фазах, по схеме полной звезды.

Рис. 14.1 Схемы соединения измерительных трансформаторов тока и приборов (показаны только амперметры): а – включение в одну фазу; б – включение в неполную звезду; в — включение в полную звезду. Здесь l-расстояние от ТТ до приборов, lрасч –расчетное расстояние учитывающее l и схему соединения соединения ТТ.

Ниже в таблице приводится набор параметров, которыми характеризуются трансформаторы тока

Наименование параметра Обозначение параметра
Номинальное напряжение Uном , кВ
Номинальный первичный ток I1ном,, А
Номинальный вторичный ток I2ном = 1 А; 5 А
Ток динамической стойкости iдин , кА
Ток термической стойкости Iтс , кА
Время термической стойкости tтс , с
Вторичное номинальное сопротивление z2ном, Ом

Выбор трансформаторов тока при проектировании энергоустановок заключается в выборе типа трансформатора, проверке на электродинамическую и термическую стойкость, определении ожидаемой вторичной нагрузки Z2 и сопоставлении ее с номинальной в заданном классе точности Z2hом.

Условия выбора трансформаторов тока (ТТ):

1. В нагрузочном режиме трансформатор тока должен неограниченно долго выдерживать воздействие первичного номинального тока I1ном и номинального напряжения Uном, т.е.

где Iраб.форс – рабочий форсированный ток в цепи ТТ (зависит от того, в цепи какого присоединения стоит ТТ), Uуст – напряжение установки, где применён ТТ.

Вторичный номинальный ток I2ном может выбран 1А или 5А, в зависимости от конкретного ТТ и дополнительных условий.

2. Проверка трансформатора тока на электродинамическую стойкость.

Электродинамическая стойкости ТТ будет обеспечена, если будет выполнено условие:

где iдин амплитуда предельного сквозного тока (тока динамической стойкости), который ТТ выдерживает по условию механической прочности, а iу (3) –значениеударного тока при трёхфазном КЗ.

3. Проверка трансформатора тока на термическую стойкость.

Термическая стойкость ТТ будет обеспечена, если будет выполнено условие:

Iтс 2 tтс ≥Bк, где Iтс — номинальный ток термической стойкости ТТ, tтс — номинальное время термической стойкости; Вк — расчетный тепловой импульс в цепи ТТ (методика расчета Вк рассматривалась в разделе 9).

4. Проверка трансформатора тока по работе в заданном классе точности.

Трансформаторы тока характеризуются токовой погрешностью fi=(I2KI1)100/I1 (в процентах), где I1 и I2 – токи первичной и вторичной обмоток ТТ, а K=I1ном/I2ном — коэффициент трансформации ТТ.

В зависимости от токовой погрешности измерительные трансформаторы тока разделены на пять классов точности: 0,2; 0,5; 1; 3; 10. Наименование класса точности соответствует предельной токовой погрешности трансформатора тока при первичном токе, равном 1—1,2 номинального. Для лабораторных измерений предназначены трансформаторы тока класса точности 0,2, для присоединений счетчиков электроэнергии — класса 0,5, для присоединения щитовых измерительных приборов — классов 1 и 3. Класс 10 применяется для присоединения устройств релейной защиты, но этот класс должен быть обеспечен при больших токах КЗ, а не при токах нагрузки.

При одном и том же первичном токе I1 токовая погрешность ТТ зависит от сопротивления вторичной нагрузки Z2, чем оно больше тем больше погрешность. Чтобы ТТ работал в заданном классе точности необходимо выполнить условие:

где Z2hом — номинальная нагрузка трансформатора тока при работе в заданном классе точности (выраженная в Омах, дается в каталогах на ТТ).

Рассмотрим подробнее, как рассчитывается нагрузка Z2. Индуктивное сопротивление токовых цепей невелико, поэтому можно принять Z2 ≈r2. Вторичная нагрузка состоит из сопротивления приборов (rприб), соединительных проводов (rпр) и переходного сопротивления контактов в местах подключения приборов (rк):

Сопротивление приборов rприб=Sприб/I 2 2ном, где Sприб — мощность, потребляемая приборами в наиболее нагруженной фазе.

Сопротивление контактов rк принимают равным 0,05 Ом при двух-трех и 0,1 Ом — при большем числе приборов.

Таким образом, при заданном составе приборов, удовлетворить условие (14.1) можно только за счет площади сечения соединительных проводов rпр.

Зная Z2hом, определяем допустимое сопротивление rпр= Z2hом – rприб-rк и площадь сечения провода q=ρlрасч/rпр, где ρ — удельное сопротивление материала провода; lрасч— расчетная длина, зависящая от схемы соединения трансформаторов тока и расстояния l от трансформаторов тока до приборов: при включении в неполную звезду lрасч = √З l (рис.14.1б),при включении в звезду lрасч= l (рис.14.1в); при включении в одну фазу lрасч=2l (рис.14.1а).

При реальном проектировании расстояния l известно, но при учебном проектировании это расстояние может быть не задано и тогда для разных присоединений принимается приблизительно следующая длина соединительных проводов l (в метрах):

Все цепи ГРУ 6—10 кВ, кроме линий к потребителям . 40—60

Линии 6—10 кВ к потребителям. . 4—6

Цепи генераторного напряжения блочных станций 20—40

Все цепи РУ 35 кВ . . 60—75

Все цепи РУ 110 кВ. 75—100

Все цепи РУ 220 кВ. 100—150

Все цепи РУ 330—500 кВ. 150—175

Для подстанций указанные длины снижают на 15—20%.

В качестве соединительных проводников применяют контрольные четырехжильные кабели (три фазных жилы и жила обратного проводника). Их сопротивление зависит от материала и сечения жил. Кабели с медными жилами (удельное сопротивление ρ=0,0175 Ом мм 2 /м) применяют во вторичных цепях мощных электростанций с высшим напряжением 220 кВ и выше. Во вторичных цепях остальных электроустановок используют кабели с алюминиевыми жилами (удельное сопротивление ρ=0,028 Ом • мм 2 /м).

На основании вышеизложенного минимальное сечение жилы контрольного кабеля можно определить согласно соотношению:

По условию механической прочности сечение медных жил должно быть не менее 1,5 мм 2 , а алюминиевых жил — не менее 2,5 мм 2 . Если в число подключаемых измерительных приборов входят счетчики, предназначенные для денежных расчетов, то минимальные сечения жил увеличивают до 2,5 мм 2 для медных жил и до 4 мм 2 для алюминиевых жил.

Источник

Стойкость трансформатора тока к механическим и тепловым воздействиям

оплавленный ТТ

Стойкость трансформатора тока к механическим и тепловым воздействиям характеризуется током электродинамической стойкости и током термической стойкости.

Ток электродинамической стойкости

Ток электродинамической стойкости IД равен наибольшей амплитуде тока короткого замыкания за все время его протекания, которую трансформатор тока выдерживает без повреждений, препятствующих его дальнейшей исправной работе.

Ток I Д характеризует способность трансформатора тока противостоять механическим (электродинамическим) воздействиям тока короткого замыкания.

Электродинамическая стойкость может характеризоваться также кратностью KД, представляющей собой отношение тока электродинамической стойкости к амплитуде номинального первичного тока.

Требования электродинамической стойкости не распространяются на шинные, встроенные и разъемные трансформаторы тока .

Ток термической стойкости

Ток термической стойкости I равен наибольшему действующему значению тока короткого замыкания за промежуток tт, которое трансформатор тока выдерживает в течение всего промежутка времени без нагрева токоведущих частей до температур, превышающих допустимые при токах короткого замыкания (см. ниже), и без повреждений, препятствующих его дальнейшей работе.

Читайте также:  Схема измерения тока с помощью вольтметра

Термическая стойкость характеризует способность трансформатора тока противостоять тепловым воздействиям тока короткого замыкания.

Для суждения о термической стойкости трансформатора тока необходимо знать не только значения тока, проходящего через трансформатор, но и его длительность или, иначе говоря, знать общее количество выделенной теплоты, которое пропорционально произведению квадрата тока ItT и длительности его tT. Это время, в свою очередь, зависит от параметров сети, в которой установлен трансформатор тока, и изменяется от одной до нескольких секунд.

Термическая стойкость может характеризоваться кратностью КТ тока термической стойкости, представляющей собой отношение тока термической стойкости к действующему значению номинального первичного тока.

В соответствии с ГОСТ 7746—78 для отечественных трансформаторов тока установлены следующие токи термической стойкости:

  • односекундный I или двухсекундный I (или кратность их K и K по отношению к номинальному первичному току) для трансформаторов тока на номинальные напряжения 330 кВ и выше;
  • односекундный I или трехсекундный I (или кратность их K и K по отношению к номинальному первичному току) для трансформаторов тока на номинальные напряжения до 220 кВ включительно.

Между токами электродинамической и термической стойкости должны быть следующие соотношения:

для трансформаторов тока на номинальные напряжения 330 кВ и выше

Стойкость трансформатора тока к механическим и тепловым воздействиям

для трансформаторов тока на номинальные напряжения до 220 кВ

Стойкость трансформатора тока к механическим и тепловым воздействиям

Температурные режимы

Температура токоведущих частей трансформаторов тока при токе термической стойкости не должна превышать:

  • 200 °C для токоведущих частей из алюминия;
  • 250 °C для токоведущих частей из меди и ее сплавов, соприкасающихся с органической изоляцией или маслом;
  • 300 °С для токоведущих частей из меди и ее сплавов, не соприкасающихся с органической изоляцией или маслом.

При определении указанных значений температуры следует исходить из начальных ее значений, соответствующих длительной работе трансформатора тока при номинальном токе.

Значения токов электродинамической и термической стойкости трансформаторов тока государственным стандартом не нормируются. Однако они должны соответствовать электродинамической и термической стойкости других аппаратов высокого напряжения, устанавливаемых в одной цепи с трансформатором тока. В табл. 1-2 приведены данные динамической и термической стойкости отечественных трансформаторов тока.

Таблица 1-2. Данные электродинамической и термической стойкости некоторых типов отечественных трансформаторов тока

Таблица 1-2

Примечание. Электродинамическая и термическая стойкость зависит от механической прочности изоляционных и токоведущих частей, а также от поперечного сечения последних.

Источник

Выбор и проверка измерительных трансформаторов тока

Трансформаторы тока предназначены для уменьшения первичного тока до значений, наиболее удобных для измерительных приборов и реле. (5 А, реже 1 или 2,5 А), а также для отделения цепей управления и защиты от первичных цепей высокого напряжения. Трансформаторы тока, применяемые в РУ, выполняют одновременно роль проходного изолятора (ТПЛ, ТПОЛ). В комплектных РУ применяются опорно-проходные (стержневые) трансформаторы тока — ТЛМ. ТПЛК, ТНЛМ, шинные — ТШЛ. в РУ 35 кВ и выше — встроенные, в зависимости от типа РУ и его напряжения.

Расчет трансформаторов тока на подстанции, по существу, сводится к проверке трансформатора тока, поставляемого комплектно с выбранной ячейкой. Итак, марка трансформатора тока зависит от типа выбранной ячейки; кроме того, трансформаторы тока выбирают:

1) по напряжению ;

2) по току ( первичному и вторичному)

При этом следует иметь в виду, что номинальный вторичный ток 1А применяется для РУ 500 кВ и мощных РУ 330 кВ, в остальных случаях применяют вторичный ток 5 А. Номинальный первичный ток должен быть как можно ближе к расчетному току установки, так как недогрузка первичной обмотки трансформатора приводит к увеличению погрешностей.

Выбранный трансформатор тока проверяют на динамическую и термическую стойкость к токам короткого замыкания. Кроме этого трансформаторы тока подбирают по классу точности, который должен соответствовать классу точности приборов, подключаемых ко вторичной цепи измерительного трансформатора тока (ИТТ) — Чтобы трансформатор тока обеспечил заданную точность измерений, мощность подключенных к нему приборов не должна быть выше номинальной вторичной нагрузки, указанной в паспорте трансформатора тока.

Термическую стойкость трансформатора тока сравнивают с тепловым импульсом Bk:

(6.31)

где — номинальный первичный ток трансформатора тока;

— коэффициент термической устойчивости;

tT — продолжительность протекания тока короткого замыкания.

Bk — тепловой импульс из таблицы 4.4.

Величины , , tT , являются паспортными данными трансформатора тока.

Динамическую стойкость сравнивают с ударным током (iуд):

(6.32)

где — коэффициент динамической устойчивости.

Нагрузка вторичной цепи трансформатора тока может быть подсчитана по выражению:

, (6.33)

где — номинальный вторичный ток трансформатора тока;

— полное сопротивление внешней цепи.

, (6.34)

где — сумма сопротивлений всех последовательно включенных обмоток приборов или реле;

— сопротивление соединительных проводов;

— сопротивление контактных соединений ( = 0.05 Ом, при 2 – 3-х приборах: при числе приборов большем 3 = 0,1 Ом).

Сопротивление приборов определяется по формуле:

, (6.35)

где — полная мощность всех приборов, присоединенных к трансформатору тока.

Сопротивление соединительных проводов находится по формуле:

, (6.36)

где — удельное сопротивление провода;

lрасч — расчетная длина проводов;

q — сечение проводов.

Длина соединительных проводов зависит от схемы соединения трансформатора тока:

, (6.37)

где m — коэффициент, зависящий от схемы включения;

l — длина проводов (для подстанций принимают l = 5 м).

При включении трансформатора тока в одну фазу m = 2, при включении трансформатора тока в неполную звезду, , при включении в звезду, m =1.

Минимальное сечение проводов вторичных цепей трансформатора тока не должно быть меньше 2,5 мм 2 (для алюминия) и 1,5 мм 2 (для меди) по условию механической прочности. Если к трансформатору тока присоединены счетчики, эти сечения должны быть увеличены на одну ступень.

В РУ НН подстанции следует выбирать (проверять) трансформаторы тока в ячейках следующих типов: ввода, секционных, отходящих линий, а также в ячейках трансформатора собственных нужд. Расчетные токи этих ячеек определяются по выражениям (6.21-6.23), а в ячейках ТСН:

, (6.38)

где Sнтсн — номинальная мощность ТСН.

Результаты расчета сводятся в таблицу 6.8:

Таблица 6.8 — Сводная таблица по выбору трансформаторов тока РУ НН подстанци:

Параметр трансформатора Условие выбора (проверки) Типы ячеек
ввода секционирования отходящих линий ТСН
Тип трансформатора определяется серией ячейки (по справочнику)
Номинальное напряжение
Номинальный ток
первичный
вторичный А
Класс точности В соответствии с классом точности, присоединенных приборов
Номинальная вторичная нагрузка или
Динамическая устойчивость
Термическая устойчивость

Рекомендуемый перечень приборов и их размещение приведены в таблице 4.11 /11/.

Пример 1

Выбрать трансформатор тока в ячейке ввода силового трансформатора на подстанции. Номинальная мощность трансформатора 6,3 МВА, коэффициент трансформации 110/10,5 кВ. На подстанции установлено два трансформатора. Расчетная нагрузка подстанции составляет Smax 10,75 МВА. Сеть 10 кВ не заземлена. Ударный ток на стороне низкого напряжения составляет 27,5 кА. К трансформаторам тока должны быть присоединены амперметры и счетчики активной и реактивной мощности. Тип ячеек в РУ-10 кВ — КРУ-2-10П.

Максимальный расчетный ток ячейки ввода (для наиболее неблагоприятного эксплуатационного режима):

А.

Выбирается ближайший стандартный трансформатор тока, встроенный в ячейку ввода (КРУ-2-10П) — ТПОЛ-600/5-0,5/Р с двумя вторичными обмотками: для измерительных приборов и релейной защиты. Номинальная нагрузка такого трансформатора тока класса точности 0,5 — S2 = 10 ВА (r2 = 0,4 Ом), кратность электродинамической устойчивости, kдин = 81, кратность термической устойчивости, kТ = 3 с. Эти данные указаны в /3, 10/.

Выбранный трансформатор тока проверяется на электродинамическую устойчивость:

,

,

а также на термическую устойчивость:

,

,

.

c из расчета (таблица 4.4); Ta =0,025 с по таблице 4.3;

кА ,

В незаземленных цепях достаточно иметь трансформаторы тока в двух фазах, например, в A и C. Определяются нагрузки на трансформатор тока от измерительных приборов, данные сводятся в таблицу 6.9:

Таблица 6.9 – Нагрузка измерительных приборов по фазам

Наименование прибора Тип Нагрузка по фазам
А В С
Амперметр Н-377 0,1
Счетчик активной энергии САЗ-И673 2,5 2,5
Счетчик реактивной энергии СРЧ-И676 2,5 2,5
Итого 5,1

Из таблицы видно, что наиболее нагруженной является фаза А, ее нагрузка составляет ВА или rприб = 0,204 Ом. Определяется сопротивление соединительных проводов из алюминия сечением q = 4 мм 2 , длиной l= 5 м.

Читайте также:  Кто несет ответственность за несчастные случаи происшедшие от поражения электрическим током

Ом,

где = 0,0283 Ом/м·мм 2 для алюминия;

Полное сопротивление вторичной цепи:

Ом,

где rконт = 0,05 Ом.

Сравнивая паспортные и расчетные данные по вторичной нагрузке трансформаторов тока получаем:

Следовательно, выбранный трансформатор тока проходит по всем параметрам.

Прокрутить вверх

ЧТО ТАКОЕ УВЕРЕННОЕ ПОВЕДЕНИЕ В МЕЖЛИЧНОСТНЫХ ОТНОШЕНИЯХ? Исторически существует три основных модели различий, существующих между.

Что делает отдел по эксплуатации и сопровождению ИС? Отвечает за сохранность данных (расписания копирования, копирование и пр.).

Конфликты в семейной жизни. Как это изменить? Редкий брак и взаимоотношения существуют без конфликтов и напряженности. Через это проходят все.

ЧТО ПРОИСХОДИТ, КОГДА МЫ ССОРИМСЯ Не понимая различий, существующих между мужчинами и женщинами, очень легко довести дело до ссоры.

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Источник



17.4. Электродинамическая и термическая стойкость трансформаторов тока

Трансформатор тока, как всякий ап­парат, включаемый в цепь последова­тельно, должен быть электродинами­чески и термически стойким.

Электродинамическая стойкость. В трансформаторах тока имеют место внутренние электродинамические силы от взаимодействия токов в элементах обмоток, главным образом первичной, и внешние силы от взаимодействия токов разноименных фаз.

Многовитковые трансформаторы то­ка, у которых первичная обмотка вы­полнена в виде катушки или в виде нескольких петель удлиненной формы, подвержены в основном действию

внутренних электродинамических сил. В одновитковых трансформаторах, где первичная обмотка представляет собой прямолинейный проводник, внутренние силы практически отсутствуют и элект­родинамическая стойкость определяется внешними силами.

Электродинамическую стойкость трансформаторов тока характеризуют током динамической стойкости iДИН или отношением этого тока к амплитуде номинального первичного тока, т. е. кратностью

Кроме того, для трансформаторов тока внутренней установки, подвержен­ных внешним электродинамическим си­лам вследствие относительно небольших расстояний между фазами, заводы-изго-.товители указывают наибольшее до­пустимое расстояние от вывода первич­ной обмотки до ближайшего опорного изолятора при минимальном расстоя­нии между фазами.

Условие электродинамической стой­кости трансформатора тока выражается следующим образом:

Условие термической стойкости трансформатора тока имеет вид

где В — интеграл Джоуля; Ктер = = Iтер/I1ном — кратность тока термиче­ской стойкости.

17.5. Конструкции трансформаторов тока

Различают две основные группы из­мерительных трансформаторов тока: одновитковые и многовитковые.

Одновитковые трансформаторы наи­более просты в изготовлении. Однако при одном витке первичной обмотки и применении стали среднего качества

МДС обмотки недостаточна для транс­форматоров класса 0,5, если первичный ток менее 400—600 А. Одновитковые трансформаторы с меньшим номиналь­ным током, например встроенного ти­па, относятся к классам 1 и 3. Приме­нение получили три характерные конст­рукции одновитковых трансформаторов: стержневые, шинные и встроенные.

Стержневые трансформаторы тока изготовляют для номинальных напряже­ний до 35 кВ и номинальных первич­ных токов от 400 до 1500 А. В качестве примера на рис. 17.9 показан стержне­вой трансформатор типа ТПОЛ (П — проходной, О — одновитковый, Л — ли­тая изоляция) для номинального напря­жения 10 кВ. Первичной обмоткой слу­жит прямолинейный стержень 1 с зажи­мами на концах. На стержень поверх изоляции надеты два кольцевых магни-топровода 2 со вторичными обмотками. Таким образом, два трансформатора объединены в общую конструкцию. Маг-

нитопроводы вместе с первичной и вто­ричными обмотками залиты эпоксид­ным компаундом и образуют моно­литный блок 3 в виде проходного изо­лятора. Блок снабжен фланцем 4 из силумина с отверстиями для крепежных болтов. Зажимы вторичных обмоток 5 расположены на боковом приливе изо­ляционного блока.

Диаметры магнитопроводов одина­ковы для всех трансформаторов этой серии, а высота зависит от назначения трансформатора и первичного номи­нального тока.

Шинные трансформаторы тока изго­товляют для номинальных напряжений до 20 кВ и номинальных первичных токов до 24000 А. При таких больших токах целесообразно упростить конст­рукцию трансформатора, используя в качестве первичной обмотки шину или пакет шин соответствующего присоеди­нения. При этом устраняются зажимы первичной обмотки с контактными соединениями. Вследствие большого но­минального первичного тока шинные трансформаторы можно выполнить в классе 0,5, не прибегая к компенсации погрешностей. Металлическая арматура шинных трансформаторов должна быть выполнена из немагнитного материала во избежание чрезмерного нагревания вихревыми токами. В качестве примера на рис. 17.10 показан шинный транс­форматор типа ТШЛ-20 (Ш — шинный, Л — литая изоляция) для напряжения 20 кВ. Магнитопроводы 1 и 2 со вто­ричными обмотками залиты эпоксид­ным компаундом и образуют изоляци­онный блок 3. Блок соединяется с осно­ванием 4, имеющим приливы 5 для крепления трансформатора. Проходное отверстие (окно) с размерами от 200×200 до 250×250 мм 2 рассчитано на установку двух шин корытного сече­ния. Зажимы 6 вторичных обмоток расположены над блоком.

Встроенные трансформаторы тока устанавливают на вводах 35 кВ и выше масляных баковых выключателей и си­ловых трансформаторов. На рис. 17.11 показан магнитопровод с вторичной об­моткой встроенного трансформатора

тока, предназначенного для масляного выключателя типа У-110 (два трансфор­матора на каждый ввод). Токоведущие стержни вводов с их изоляцией служат первичными обмотками для встроенных трансформаторов. Поэтому они дешевы и не требуют особого места для уста­новки.

Вторичные обмотки встроенных трансформаторов выполняют с ответ­влениями, позволяющими подобрать число витков и, следовательно, коэффи­циент трансформации в соответствии с рабочим током цепи. Обычно вто­ричные обмотки имеют четыре ответвле­ния, причем основные выводы (полное число витков) соответствуют номиналь­ному току выключателя. При работе трансформатора тока на ответвлении с неполным числом витков вторичной обмотки и, следовательно, с первичным током меньше номинального погреш-

ность его увеличивается вследствие уменьшения МДС первичной обмотки.

Погрешности встроенных трансфор­маторов тока при прочих равных усло­виях больше погрешностей стержневых и шинных трансформаторов, так как из-за значительного диаметра кольцево­го магнитопровода, определяемого диа­метром ввода, длина его и, следова­тельно, сопротивление магнитной цепи оказываются весьма большими.

Многовитковые трансформаторы то­ка изготовляют для всей шкалы номи­нальных напряжений и для токов до 1000—1500 А, т. е. применительно к ус­ловиям, когда необходимая точность не может быть обеспечена при одном первичном витке. Наличие нескольких витков в первичной обмотке усложняет конструкцию трансформатора, так как приходится учитывать внутренние элект­родинамические силы при КЗ и значи­тельные витковые напряжения при вол­новых процессах с крутым фронтом волны. Вид изоляции и конструкцию обмоток выбирают в соответствии с номинальным напряжением.

Для напряжений 6—10 кВ изготов­ляют катушечные и петлевые транс­форматоры тока с эпоксидной изоля­цией. В качестве примера на рис. 17.12 показан внешний вид трансформатора тока типа ТПЛ-1 (П — петлевой, Л — литая изоляция) для напряжения 10 кВ. Здесь 1 — литой блок, охватывающий первичную и вторичную обмотки; 2 — магнитопроводы; 3,—зажимы вторич­ных обмоток; 4 — основание с отвер­стиями для болтов.

Для напряжений 35 — 750 кВ изготов­ляют трансформаторы тока наружной установки с масляным заполнением ти­па ТФН (Ф — фарфоровая изоляция, Н — наружная установка).

На рис. 17.13 показаны магнито­проводы и обмотки трансформатора тока типа ТФН. Кольцевые магнитопро­воды 1—3 выполнены из ленточной стали. На них навиты вторичные об­мотки. Первичная обмотка 4 из много­жильного провода проходит через от­верстия магнитопроводов. Концы ее вы­ведены наверх. Такую своеобразную кон-

струкцию называют звеньевой или восьмерочной. Первичная обмотка состоит из двух секций, которые с помощью переключателя могут быть соединены последовательно или парал­лельно, благодаря чему первичный но­минальный ток и, следовательно, ко­эффициент трансформации можно изме­нять в отношении 1:2. Изоляция 5 первичной обмотки, а также магнито-проводов с вторичными обмотками вы­полнена из кабельной бумаги. Магни-топроводы и обмотки трансформаторов тока типа ТФН заключены в фарфоро­вый полый изолятор, заполненный мас­лом (рис. 17.14).

Трансформаторы тока 330 — 750 кВ выполняют каскадного типа. Они состо­ят из двух ступеней — верхней 1 и ниж­ней 2, каждая из которых является конструктивно самостоятельным эле­ментом, аналогичным трансформатору тока типа ТФН, и рассчитана на поло­вину номинального напряжения (рис. 17.15, а). Ко вторичной обмотке

верхней ступени присоединяется первич­ная обмотка 3 трансформатора нижней ступени, имеющего четыре-пять вторич­ных обмоток. Таким образом, в каскад­ном трансформаторе тока применены две последовательные трансформации (рис. 17.15, б). Это приводит к некоторо­му увеличению погрешностей.

Источник