Меню

Как рассчитать линейные токи в трехфазной четырехпроводной сети

Четырехпроводная и трехпроводная трехфазные цепи. Симметричная трехфазная система. Соотношение между линейными и фазными напряжениями, фазными и линейными токами

При соединение фаз обмотки генератора (или трансформатора) звездой их концы X, Y и Z соединяют в одну общую точку N, называемую нейтральной точкой (или нейтралью) (рис. 3.6). Концы фаз приемников (Za, Zb, Zc) также соединяют в одну точку n. Такое соединение называется соединение звезда.

Провода Aa, Bb и Cc, соединяющие начала фаз генератора и приемника, называются линейными, провод Nn, соединяющий точкуN генератора с точкой n приемника, – нейтральным.

Трехфазная цепь с нейтральным проводом будет четырехпроводной, без нейтрального провода – трехпроводной.

В трехфазных цепях различают фазные и линейные напряжения. Фазное напряжение UФ – напряжение между началом и концом фазы или между линейным проводом и нейтралью (UA, UB, UC у источника; Ua, Ub, Uc у приемника). Если сопротивлением проводов можно пренебречь, то фазное напряжение в приемнике считают таким же, как и в источнике. (UA=Ua, UB=Ub, UC=Uc). За условно положительные направления фазных напряжений принимают направления от начала к концу фаз.

Линейное напряжение (UЛ) – напряжение между линейными проводами или между одноименными выводами разных фаз (UAB, UBC, UCA). Условно положительные направления линейных напряжений приняты от точек, соответствующих первому индексу, к точкам соответствующим второму индексу (рис. 3.6).

По аналогии с фазными и линейными напряжениями различают также фазные и линейные токи:

· Фазные (IФ) – это токи в фазах генератора и приемников.

· Линейные (IЛ) – токи в линейных проводах.

При соединении в звезду фазные и линейные токи равны

Ток, протекающий в нейтральном проводе, обозначают IN.По первому закону Кирхгофа для нейтральной точки n (N) имеем в комплексной форме

В соответствии с выбранными условными положительными направлениями фазных и линейных напряжений можно записать уравнения по второму закону Кирхгофа.

Согласно этим выражениям на рис. 3.7а построена векторная диаграмма, из которой видно, что при симметричной системе фазных напряжений система линейных напряжений тоже симметрична: UAB, UBC, UCA равны по величине и сдвинуты по фазе относительно друг друга на 120° (общее обозначение UЛ), и опережают, соответственно, векторы фазных напряжений UA, UB, UC, (UФ) на угол 30°.

Действующие значения линейных напряжений можно определить графи-чески по векторной диаграмме или по формуле (3.8), которая следует из треугольника, образованного векторами двух фазных и одного линейного напряжений:

Предусмотренные ГОСТом линейные и фазные напряжения для цепей низкого напряжения связаны между собой соотношениями:

При соединении источника питания треугольником (рис. 3.12) конец X одной фазы соединяется с началом В второй фазы, конец Y второй фазы – с началом С третьей фазы, конец третьей фазы Z – c началом первой фазы А. Начала А, В и С фаз подключаются с помощью трех проводов к приемникам.

Соединение фаз источника в замкнутый треугольник возможно при симметричной системе ЭДС, так как ĖA + ĖB + ĖC = 0.

Если соединение обмоток треугольником выполнено неправильно, т.е. в одну точку соединены концы или начала двух фаз, то суммарная ЭДС в контуре треугольника отличается от нуля и по обмоткам протекает большой ток. Это аварийный режим для источников питания, и поэтому недопустим.

Напряжение между концом и началом фазы при соединении треугольником – это напряжение между линейными проводами. Поэтому при соединении треугольником линейное напряжение равно фазному напряжению.

Пренебрегая сопротивлением линейных проводов, линейные напряжения потребителя можно приравнять линейным напряжениям источника питания: Uab = UAB, Ubc = UBC, Uca = UCA. По фазам Zab, Zbc, Zca приемника протекают фазные токи İab, İbc и İca. Условное положительное направление фазных напряжений Úab, Úbc и Úca совпадает с положительным направлением фазных токов. Условное положительное направление линейных токов İA, İB и İC принято от источников питания к приемнику.

В отличие от соединения звездой при соединении треугольником фазные токи не равны линейным. Токи в фазах приемника определяются по формулам

Линейные токи можно определить по фазным, составив уравнения по первому закону Кирхгофа для узлов a, b и c (рис 3.12)

Сложив левые и правые части системы уравнений, (3.20), получим

т.е. сумма комплексов линейных токов равна нулю как при симметричной, так и при несимметричной нагрузке.

Источник

Пример расчёта трёхфазной цепи

ЧАСТЬ 3. Цепи трёхфазного тока

3.1. В результате изучения данного раздела студенты должны:

а. уяснить вопрос о получении трехфазной системы э. д. с;

б. познакомиться с двумя типами соединения в цепях трехфазного тока (звезда и треугольник);

в. знать соотношения между линейными и фазными параметрами (токами и напряжениями) как в случае симметричной, так и нессиметричной нагрузок для обоих типов соединения ;

г. ясно представлять назначение нейтрального провода в четырёхпроводной трёхфазной цепи;

д. уметь рассчитать трёхфазную цепь в симметричном и несимметричном режимах для обоих типов соединения либо графо-аналитическим методом с помощью векторных диаграмм, либо методом комплексных амплитуд;

Читайте также:  Тока бока картинки для распечатки

е. усвоить понятия и способы определения фазных мощностей и мощностей всей трёхфазной нагрузки;

ж. уяснить преимущества трехфазной системы тока по сравнению с однофазной.

3.2.1.Нагрузка симметричная

Задача 3.В трёхфазную трёхпроводную цепь с симметричным линейным напряжением включён трёхфазный электроприёмник, собранный по схеме треугольник (рис.10)

Определить фазные и линейные токи, активную мощность каждой фазы и всей трёхфазной нагрузки. Построить векторную диаграмму напряжений.

  1. При соединении “треугольник” фазное напряжение равно линейному напряжению .

Учитывая, что нагрузка симметричная, находим фазные токи:

  1. Определяем линейные токи:
  1. Активная мощность одной фазы
  1. Активная мощность всей трёхфазной нагрузки:
  1. Строим векторную диаграмму:

а) строим базис – тройку симметричных векторов фазных (они же линейные) напряжений , , . (См рис.11);

б) строим вектора фазных токов и под углом сдвига фаз к соответствующим векторам фазных напряжений в сторону отставания ;

в) на основании уравнений состояния в соответствии с первым

законом Кирхгофа строим вектора линейных токов

Задача 4.Данные и требования такие же, как и в задаче 3. Отличие в типе соединения: вместо треугольника соединение звезда. (рис.12 )

1. При соединении “звезда”

2. Фазные (они же линейные) токи определим на основании закона Ома

3. Фазная активная мощность

4. Активная мощность всей трёхфазной нагрузки

5. Векторная диаграмма

а) строим базисную тройку векторов фазных напряжений ;

б) в сторону опережения по фазе ( нагрузка активно-ёмкостная ) под углом относительно соответствующих фазных напряжений строим вектора фазных (они же линейные) токов

в) на основании второго закона Кирхгофа вектора линейных напряжений найдем исходя из следующих уравнений:

Задача 5.В трехфазную четырехпроводную линию с симметричным линейным напряжением U включен электроприемник, собранный по схеме «звезда» (см. рис. 14). Даны сопротивления фаз

Определить фазные и линейные токи, ток в нейтральном проводе, активную мощность всей цепи и каждой фазы в отдельности.

  1. Благодаря наличию нейтрального провода напряжение на всех фазах симметризовано. Поэтому
  1. Фазные токи (они же линейные)
  1. Фазные активные мощности
  1. Активная мощность всей трехфазной нагрузки
  1. Ток в нейтральном проводе найдем графическим методом с помощью векторной диаграммы (Рис.15.):

a) строим базисную тройку симметричных векторов фазных напряжений ,

под соответствующими углами сдвигов фаз строим вектора фазных (они же линейные)

токов, задавшись при этом определенным масштабом.

— вектор тока совпадает по фазе с вектором т.к. сопротивление фазы А чисто активное. Длина вектора определяется выбранным масштабом.

— вектор отстает по фазе от вектора на угол т.к. фаза В имеет активно-индуктивный характер сопротивления. Длина вектора определяется в соответствии с масштабом и отмеряется линейкой. Угол откладывается по транспортиру.

— вектор опережает на угол

б) строим вектор тока нейтрального провода , для этого складываем (с помощью

(на основании первого закона Кирхгофа)

Замеряем линейкой длину вектора , умножаем её на масштаб и т.о. узнаем величину

Длину вектора (т.е. величину тока в нейтральном проводе) можно вычислить аналитически, используя законы геометрии. В этом случае диаграмма строится качественно (не в масштабе), а длина вектора вычисляется либо по проекциям, либо по теореме косинусов.

ЧАСТЬ 4. ЭЛЕКТРИЧЕСКИЕ МАШИНЫ ПОСТОЯННОГО ТОКА.

4.1. Изучение электрических машин постоянного тока надо начи­нать с их устройства. Разобраться с понятием: «Электрические машины», обратить внимание на то, что «Двигатель постоянного тока» и «Генератор пос­тоянного тока»,— это соответственно двигательный и генераторный режимы работы одной и той же электрической машины (свойство обратимости).

После изучения данного раздела студент должен:

1) знать основные конструктивные элементы машин постоянного тока, понимать их назначение;

2) знать классифика­цию машин постоянного тока по способу возбуждения магнитного поля;

3) понимать принцип действия генератора и двигателя постоянного тока;

4) иметь представление о том, как можно регулировать скорость и реверсировать двигатель постоянного тока; ориентироваться в пас­портных данных машины и определять по ним основные параметры и характеристики;

5) знать уравнение электрического состояния генератора и двигателя постоянного тока, знать от чего зависят э.д.с. якоря (Е) и электромагнитный момент (М)

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Как рассчитать линейные токи в трехфазной четырехпроводной сети

Трехфазные цепи являются разновидностью цепей синусоидального тока, и, следовательно, все рассмотренные ранее методы расчета и анализа в символической форме в полной мере распространяются на них. Анализ трехфазных систем удобно осуществлять с использованием векторных диаграмм, позволяющих достаточно просто определять фазовые сдвиги между переменными. Однако определенная специфика многофазных цепей вносит характерные особенности в их расчет, что, в первую очередь, касается анализа их работы в симметричных режимах.

Расчет симметричных режимов работы трехфазных систем

Многофазный приемник и вообще многофазная цепь называются симметричными, если в них комплексные сопротивления соответствующих фаз одинаковы, т.е. если . В противном случае они являются несимметричными. Равенство модулей указанных сопротивлений не является достаточным условием симметрии цепи. Так, например трехфазный приемник на рис. 1,а является симметричным, а на рис. 1,б – нет даже при условии: .

Читайте также:  Нормальное напряжение тока в сети

Если к симметричной трехфазной цепи приложена симметричная трехфазная система напряжений генератора, то в ней будет иметь место симметричная система токов. Такой режим работы трехфазной цепи называется симметричным. В этом режиме токи и напряжения соответствующих фаз равны по модулю и сдвинуты по фазе друг по отношению к другу на угол . Вследствие указанного расчет таких цепей проводится для одной – базовой – фазы, в качестве которой обычно принимают фазу А. При этом соответствующие величины в других фазах получают формальным добавлением к аргументу переменной фазы А фазового сдвига при сохранении неизменным ее модуля.

Так для симметричного режима работы цепи на рис. 2,а при известных линейном напряжении и сопротивлениях фаз можно записать

где определяется характером нагрузки .

Тогда на основании вышесказанного

Комплексы линейных токов можно найти с использованием векторной диаграммы на рис. 2,б, из которой вытекает:

При анализе сложных схем, работающих в симметричном режиме, расчет осуществляется с помощью двух основных приемов:

Все треугольники заменяются эквивалентными звездами. Поскольку треугольники симметричны, то в соответствии с формулами преобразования «треугольник-звезда» .

Так как все исходные и вновь полученные звезды нагрузки симметричны, то потенциалы их нейтральных точек одинаковы. Следовательно, без изменения режима работы цепи их можно (мысленно) соединить нейтральным проводом. После этого из схемы выделяется базовая фаза (обычно фаза А), для которой и осуществляется расчет, по результатам которого определяются соответствующие величины в других фазах.

Пусть, например, при заданном фазном напряжении необходимо определить линейные токи и в схеме на рис. 3, все сопротивления в которой известны.

В соответствии с указанной методикой выделим расчетную фазу А, которая представлена на рис. 4. Здесь , .

Тогда для тока можно записать

Расчет несимметричных режимов работы трехфазных систем

Если хотя бы одно из условий симметрии не выполняется, в трехфазной цепи имеет место несимметричный режим работы. Такие режимы при наличии в цепи только статической нагрузки и пренебрежении падением напряжения в генераторе рассчитываются для всей цепи в целом любым из рассмотренных ранее методов расчета. При этом фазные напряжения генератора заменяются соответствующими источниками ЭДС. Можно отметить, что, поскольку в многофазных цепях, помимо токов, обычно представляют интерес также потенциалы узлов, чаще других для расчета сложных схем применяется метод узловых потенциалов. Для анализа несимметричных режимов работы трехфазных цепей с электрическими машинами в основном применяется метод симметричных составляющих, который будет рассмотрен далее.

При заданных линейных напряжениях наиболее просто рассчитываются трехфазные цепи при соединении в треугольник. Пусть в схеме на рис. 2,а . Тогда при известных комплексах линейных напряжений в соответствии с законом Ома

По найденным фазным токам приемника на основании первого закона Кирхгофа определяются линейные токи:

Обычно на практике известны не комплексы линейных напряжений, а их модули. В этом случае необходимо предварительное определение начальных фаз этих напряжений, что можно осуществить, например, графически. Для этого, приняв , по заданным модулям напряжений, строим треугольник (см. рис.5), из которого (путем замера) определяем значения углов a и b .

Искомые углы a и b могут быть также найдены аналитически на основании теоремы косинусов:

При соединении фаз генератора и нагрузки в звезду и наличии нейтрального провода с нулевым сопротивлением фазные напряжения нагрузки равны соответствующим напряжениям на фазах источника. В этом случае фазные токи легко определяются по закону Ома, т.е. путем деления известных напряжений на фазах потребителя на соответствующие сопротивления. Однако, если сопротивление нейтрального провода велико или он отсутствует, требуется более сложный расчет.

Рассмотрим трехфазную цепь на рис. 6,а. При симметричном питании и несимметричной нагрузке ей в общем случае будет соответствовать векторная диаграмма напряжений (см. рис. 6,б), на которой нейтральные точки источника и приемника занимают разные положения, т.е. .

Разность потенциалов нейтральных точек генератора и нагрузки называется напряжением смещения нейтральной точки (обычно принимается, что ) или просто напряжением смещения нейтрали. Чем оно больше, тем сильнее несимметрия фазных напряжений на нагрузке, что наглядно иллюстрирует векторная диаграмма на рис. 6,б.

Для расчета токов в цепи на рис. 6,а необходимо знать напряжение смещения нейтрали. Если оно известно, то напряжения на фазах нагрузки равны:

Тогда для искомых токов можно записать:

Соотношение для напряжения смещения нейтрали, записанное на основании метода узловых потенциалов, имеет вид

При наличии нейтрального провода с нулевым сопротивлением , и из (1) . В случае отсутствия нейтрального провода . При симметричной нагрузке с учетом того, что , из (1) вытекает .

Читайте также:  Простейшие вольтметры постоянного тока

В качестве примера анализа несимметричного режима работы цепи с использованием соотношения (1) определим, какая из ламп в схеме на рис. 7 с прямым чередованием фаз источника будет гореть ярче, если .

Запишем выражения комплексных сопротивлений фаз нагрузки:

Тогда для напряжения смещения нейтрали будем иметь

Напряжения на фазах нагрузки (здесь и далее индекс N у фазных напряжений источника опускается)

Таким образом, наиболее ярко будет гореть лампочка в фазе С.

В заключение отметим, что если при соединении в звезду задаются линейные напряжения (что обычно имеет место на практике), то с учетом того, что сумма последних равна нулю, их можно однозначно задать с помощью двух источников ЭДС, например, и . Тогда, поскольку при этом , соотношение (1) трансформируется в формулу

  1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
  2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Контрольные вопросы и задачи

  1. Какой многофазный приемник является симметричным?
  2. Какой режим работы трехфазной цепи называется симметричным?
  3. В чем заключается специфика расчета симметричных режимов работы трехфазных цепей?
  4. С помощью каких приемов трехфазная симметричная схема сводится к расчетной однофазной?
  5. Что такое напряжение смещения нейтрали, как оно определяется?
  6. Как можно определить комплексы линейных напряжений, если заданы их модули?
  7. Что обеспечивает нейтральный провод с нулевым сопротивлением?
  8. В цепи на рис. 6,а ; ; ; . Линейное напряжение равно 380 В.

Определить ток в нейтральном проводе.

В схеме предыдущей задачи ; . Остальные параметры те же.

Определить ток в нейтральном проводе.

В задаче 8 нейтральный провод оборван.

Определить фазные напряжения на нагрузке.

В задаче 9 нейтральный провод оборван.

Источник



Пример решения задачи на расчет трехфазной цепи соединенной звездой.

Puc. 6.

Задача: В каждую фазу трехфазной четырехпроводной сети включили сопротивления так, как показано на рис. 6. Величины сопротивлений даны на рисунке. Линейное напряжение сети U=380B. Определить: линейные токи, углы сдвига фаз, ток в нулевом проводе, активную, реактивную и полную мощности трех фаз. Построить в масштабе векторную диаграмму.

Решение. 1. Полные сопротивления фаз:

2. Углы сдвига фаз:

3. Фазное напряжение

4. Линейные (фазные) токи:

5. Активная мощность потребляется только активными сопротив­лениями. Поэтому активная мощность трех фаз

6. Реактивная мощность потребляется только реактивными сопро­тивлениями. Поэтому реактивная мощность трех фаз

Знак «минус» показывает, что реактивная мощность системы но­сит емкостный характер.

7. Полная мощность трех фаз:

8. Построение векторной диаграммы начинаем с векторов фаз­ных напряжений.

Рис. 7.

Из точки О (рис. 7) в принятом масштабе напряжений прово­дим три вектора фазных напряжений , и , углы между которыми составляют 120°. Затем строим векторы линейных напря­жений , и , согласно уравнениям:

Черточки над буквами показывают, что векторы должны вычи­таться и складываться геометрически. Например, для построения линейного напряжения к вектору нужно геометрически прибавить обратный по направлению вектор .

Под углом φА=53° в сторону опережения вектора фазного на­пряжения откладываем в принятом масштабе токов вектор то­ка ; под углом φВ=37° в сторону отставания от вектора фазного напряжения откладываем вектор тока .

Вектор тока совпадает по направлению с вектором фазного напряжения так как φС=0.

Для определения тока в_нулевом проводе I складываем геомет­рически векторы токов , и . Из векторной диаграммы, поль­зуясь масштабом для токов, нахо­дим ток I=34A.

Пример 2:В каждую фазу трехфазной сети включили сопро­тивления так, как показано на рис. 8. Величины сопротивлений даны на рисунке3. Линейное напря­жение сети U =220B.

Рис. 8.

Определить: фазные и линей­ные токи, углы сдвига фаз, актив­ную, реактивную и полную мощ­ности трех фаз. Построить в мас­штабе векторную диаграмму.

Решение 1. Полные со­противления фаз:

2. Углы сдвига фаз:

4. Активная мощность потребляется только активными сопро­тивлениями. Поэтому активная мощность трех фаз

5. Реактивная мощность потребляется только реактивными со­противлениями. Поэтому реактивная мощность трех фаз

6. Полная мощность трех фаз

7. Для определения линейных токов строим векторную диаграм­му (рис. 4). Построение _начинаем с векторов фазных (линейных) напряжений , и .

Вектор тока совпадает с вектором фазного напряжения , так как φАВ=0.

Вектор тока отстает от вектора на угол φВС =90°, а вектор тока опережает вектор на угол φВС =53° .

Линейные токи , и на диаграмме равны геометрической разности соответствующих фазных токов. Например, , т.е. ток в линейном проводе А равен геометрической сумме вектора фазного тока и обратного вектора фазного тока .

Из векторной диаграммы графически, пользуясь масштабом, определяем линейные токи: IA=66A; IB=43A; IC=25A.

Источник