Меню

Как определить векторную сумму токов

Векторные диаграммы электрических цепей

При исследовании электрических цепей и моделировании часто пользуются векторными диаграммами токов и напряжений. Под векторной диаграммой понимается совокупность векторов, изображающих синусоидальные функции времени [1].

Воспользуйтесь программой онлайн-расчёта электрических цепей. Программа позволяет рассчитывать электрические цепи по закону Ома, по законам Кирхгофа, по методам контурных токов, узловых потенциалов и эквивалентного генератора, а также рассчитывать эквивалентное сопротивление цепи относительно источника питания.

Представление синусоидальных функций в виде комплексных чисел

Векторная диаграмма – это удобный инструмент представления синусоидальных функций времени, коими являются, к примеру, напряжения и токи электрической цепи переменного тока.

Рассмотрим, например, произвольный ток, представленный в виде синусоидальной функции

$$ i(t) = 10 \sin(\omega t + 30 \degree). $$

Данный синусоидальный сигнал можно представить в виде комплексной величины

$$ \underline = 10 \angle 30 \degree. $$

Для формирования комплексного числа используются модуль и фаза синусоидального сигнала.

Закон Ома в комплексной форме

Известно [1], что напряжение $ \underline $ на сопротивлении $ \underline $ связано с током $ \underline $, протекающим через это сопротивление, согласно закону Ома:

$$ \underline = \underline \cdot \underline. $$

Кроме того, известны соотношения, определяющие активное сопротивление резистора, индуктивное сопротивление катушки и ёмкостное сопротивление конденсатора:

где $ X_ = \omega L $, $ X_ = \frac<1> <\omega C>$, $ R $ – сопротивление резистора, $ L $ – индуктивность катушки, $ C $ – ёмкость конденсатора, $ \omega = 2 \pi f $ – циклическая частота, $ f $ – частота сети, $ j $ – мнимая единица.

Векторная диаграмма при последовательном соединении элементов

Для построения векторных диаграмм сперва составляют уравнения по законам Кирхгофа для рассматриваемой электрической цепи.

Рассмотрим электрическую цепь, представленную на рис. 1, и нарисуем для неё векторную диаграмму напряжений. Обозначим падение напряжение на элементах.

Последовательное соединение элементов электрической цепи для построения векторной диаграммы напряжений

Рис. 1. Последовательное соединение элементов цепи

Составим уравнение для данной цепи по второму закону Кирхгофа:

$$ \underline_ + \underline_ + \underline_ = \underline. $$

По закону Ома падение напряжений на элементах определяется по следующим выражениям:

$$ \underline_ = \underline \cdot R, $$

$$ \underline_ = \underline \cdot jX_, $$

$$ \underline_ = -\underline \cdot jX_. $$

Для построения векторной диаграммы необходимо отобразить приведённые в уравнении слагаемые на комплексной плоскости. Обычно вектора токов и напряжений отображаются в своих масштабах: отдельно для напряжений и отдельно для токов.

Из курса математики известно, что $ j = 1 \angle 90 \degree $, $ -j = 1 \angle -90 \degree $. Отсюда при построении векторной диаграммы умножение какого-либо вектора на мнимую единицу $ j $ приводит к повороту этого вектора на 90° против часовой стрелки, а умножение на $ -j $ приводит к повороту этого вектора на 90° по часовой стрелке.

При построении векторной диаграммы напряжений на комплексной плоскости сперва отобразим вектор тока $ \underline $, после чего относительного него будем отображать вектора падений напряжений (рис. 2) с учётом приведённых выше соотношений для мнимой единицы.

Падение напряжения на резисторе $ \underline_ $ совпадает по направлению с током $ \underline $ (т.к. $ \underline_ = \underline \cdot R $, а $ R $ – чисто действительная величина или, простыми словами, нет умножения на мнимую единицу). Падение напряжения на индуктивном сопротивлении опережает вектор тока на 90° (т.к. $ \underline_ = \underline \cdot jX_ $, а умножение на $ j $ приводит повороту этого вектора на 90° против часовой стрелки). Падение напряжения на ёмкостном сопротивлении отстаёт от вектора тока на 90° (т.к. $ \underline_ = -\underline \cdot jX_ $, а умножение на $ -j $ приводит повороту этого вектора на 90° по часовой стрелке).

Векторная диаграмма напряжений при последовательном соединение элементов цепи
Рис. 2. Векторная диаграмма напряжений при последовательном соединении элементов цепи

Векторная диаграмма при параллельном соединении элементов

Рассмотрим электрическую цепь, представленную на рис. 3, и нарисуем для неё векторную диаграмму токов. Обозначим направление токов в ветвях.

Параллельное соединение элементов электрической цепи для построения векторной диаграммы напряжений

Рис. 3. Параллельное соединение элементов цепи

Составим уравнение для данной цепи по первому закону Кирхгофа:

$$ \underline— \underline_— \underline_— \underline_ = 0, $$

$$ \underline = \underline_ + \underline_ + \underline_ = 0. $$

Определим по закону Ома токи в ветвях по следующим выражениям, учитывая, что $ \frac<1> = -j $:

Для построения векторной диаграммы необходимо отобразить приведённые в уравнении слагаемые на комплексной плоскости.

При построении векторной диаграммы токов на комплексной плоскости сперва отобразим вектор ЭДС $ \underline $, после чего относительного него будем отображать вектора токов токов (рис. 4) с учётом приведённых выше соотношений для мнимой единицы.

Ток в резисторе IR совпадает по направлению с ЭДС $ \underline $ (т.к. $ \underline_ = \frac<\underline> $, а $ R $ – чисто действительная величина или, простыми словами, нет умножения на мнимую единицу). Ток в индуктивном сопротивлении отстаёт от вектора ЭДС на 90° (т.к. $ \underline_ = -j \frac<\underline>> $, а умножение на $ -j $ приводит повороту этого вектора на 90° по часовой стрелке). Ток в ёмкостном сопротивлении опережает вектор ЭДС на 90° (т.к. $ \underline_ = j \frac<\underline>> $, а умножение на $ j $ приводит повороту этого вектора на 90° против часовой стрелки). Результирующий вектор тока определяется после геометрического сложения всех векторов по правилу параллелограмма.

Векторная диаграмма токов при параллельном соединении элементов цепи

Рис. 4. Векторная диаграмма токов при параллельном соединении элементов цепи

Для произвольной цепи алгоритм построения векторных диаграмм аналогичен вышеизложенному с учётом протекаемых в ветвях токов и прикладываемых напряжений.

Обращаем ваше внимание, что на сайте представлен инструмент для построения векторных диаграмм онлайн для трёхфазных цепей.

Список использованной литературы

  1. Зевеке Г.В., Ионкин П.А., Нетушил А.В., Страхов С.В. Основы теории цепей. Учебник для вузов. Изд. 4-е, переработанное. М., «Энергия», 1975.
Читайте также:  Что называется элементарным током

Рекомендуемые записи

При расчёте электрических цепей, в том числе для целей моделирования, широко применяются законы Кирхгофа, позволяющие…

При расчёте электрических цепей, помимо законов Кирхгофа, часто применяют метод контурных токов. Метод контурных токов…

Источник

Что такое векторная диаграмма токов и напряжений? Как построить график

Использование векторных диаграмм при анализе, расчете цепей переменного тока делает возможным рассмотреть более доступно и наглядно происходящие процессы, а также в некоторых случаях значительно упростить выполняемые расчеты.

Векторной диаграммой принято называть геометрическое представление изменяющихся по синусоидальному (либо косинусоидальному) закону направленных отрезков — векторов, отображающих параметры и величины действующих синусоидальных токов, напряжений либо их амплитудных величин.

Широкое применение векторные диаграммы нашли в электротехнике, теории колебаний, акустике, оптике и т.д.

Различают 2-х вида векторных диаграмм:

  • точные;
  • качественные.

Интересное видео о векторных диаграммах смотрите ниже:

Точные изображаются по результатам численных расчетов при условии соответствия масштабов действующих значений. При их построении можно геометрически определить фазы и амплитудные значения искомых величин.

Васильев Дмитрий Петрович

Они являются одним из основных средств анализа электрических цепей, позволяя наглядно иллюстрировать и качественно контролировать ход решения задачи и легко установить квадрант, в котором располагается искомый вектор.

Векторная диаграмма токов и напряжений 1

Для удобства при построении диаграмм анализируют неподвижные векторы для определенного момента времени, который выбирается таким образом, чтобы диаграмма имела удобный для понимания вид. Ось OХ соответствует величинам действительных чисел, ось OY — оси мнимых чисел (мнимая единица). Синусоида отображает движение конца проекции на ось OY. Каждому напряжению и току соответствует собственный вектор на плоскости в полярных координатах. Его длина отображает амплитудное значение величины тока, при этом угол равен фазе.

Векторы, изображаемые на такой диаграмме, характеризуются равновеликой угловой частотой ω. В виду чего при вращении их взаимное расположение не изменяется.

Ещё одно полезное видео о векторных диаграммах:

Поэтому при изображении векторных диаграмм один вектор можно направить произвольным образом (например, по оси ОХ).

А остальные — изображать по отношению к исходному под различными углами, соответственно равными углам сдвига фаз.

Векторная диаграмма токов и напряжений 3

Таким образом, векторная диаграмма дает отчетливое представление об опережении либо отставании различных электрических величин.
Допустим у нас есть ток, величина которого изменяется по некоторому закону:

i = Im sin (ω t + φ).

С начала координат 0 под углом φ проведем вектор Im, величина которого соответствует Im. Его направление выбирается так, чтобы с положительным направлением оси OX вектор составлял угол — соответствующий фазе φ.

Абрамян Евгений Павлович

В основном векторные диаграммы изображают для действующих значений, а не амплитудных. Векторы действующих значений количественно отличаются от амплитудных значений — масштабом, поскольку:

I = Im /√2.

Векторная диаграмма токов и напряжений 4

Основным преимуществом векторных диаграмм называют возможность простого и быстрого сложения и вычитания 2-х параметров при расчете электроцепей.

Источник

Большая Энциклопедия Нефти и Газа

Векторная сумма — ток

Векторная сумма токов lt Ц I дает общий ток в цепи. [2]

Векторная сумма токов Ij 1.2 I дает общий ток в цепи. [4]

Хр и Rp и представляют собой векторную сумму токов статора и приведенного роторного. [6]

Общий ток в цепи равен векторной сумме токов . [7]

Обший ток в цепи равен векторной сумме токов . [8]

При разветвлении тока общий ток равен векторной сумме токов в отдельных ветвях. [9]

Таким образом, при наличии токов нулевой последовательности векторная сумма токов трех фаз отлична от нуля. [10]

Тогда, как это видно из чертежа, векторная сумма тока повреждения , начального тока небаланса и тока температурлого небаланса может оказаться такой, что реле срабатывает в то время, как напряжение на поврежденной секции остается в пределах нормы. При этом следует помнить, что токи начального и температурного небалансов могут иметь какую угодно фазу и вызывать как неправильное срабатывание реле, так и его отказ. [11]

В работают оба элемента; при этом ток фазы В получается как векторная сумма токов фаз Л и С. При измерении мощности работают оба элемента. [12]

Однако это равенство может быть при уменьшении тока 1А восстановлено путем уменьшения векторной суммы токов JB IC за счет увеличения угла сдвига по фазе между этими токами. [13]

В прерывателях остаточного тока проводники в контуре намотаны вокруг кольца, определяющее векторную сумму токов , которые входят и возбуждают оборудование, подлежащее защите. Во время нормальной работы векторная сумма равна нулю, а во время пробоя она равна току утечки. Когда ток утечки достигает порога прерывателя, прерыватель срабатывает. Прерыватели остаточного тока могут размыкаться низкими токами в 30 мА с малым запаздыванием — 30 микросекунд. [14]

В такой цепи ток / в неразветвленной части определяется согласно первому закону Кирхгофа как векторная сумма токов в ветвях. [15]

Источник

Векторная диаграмма токов и напряжений

Цифровое представление динамических процессов затрудняет восприятие, усложняет расчет выходных параметров после изменения условий на входе или в результате выполненной обработки. Векторная диаграмма токов и напряжений помогает успешно решать обозначенные задачи. Ознакомление с теорией и практическими примерами поможет освоить данную технологию.

Диаграмма, поясняющая процесс короткого замыкания в трехфазной цепи счетчика электроэнергии

Разновидности векторных диаграмм

Для корректного отображения переменных величин, которые определяют функциональность радиотехнических устройств, хорошо подходит векторная графика. Подразумевается соответствующее изменение основных параметров сигнала по стандартной синусоидальной (косинусоидальной) кривой. Для наглядного представления процесса гармоническое колебание представляют, как проекцию вектора на координатную ось.

Читайте также:  Постоянный ток дайте объяснение

С применением типовых формул несложно рассчитать длину, которая получится равной амплитуде в определенный момент времени. Угол наклона будет показывать фазу. Суммарные влияния и соответствующие изменения векторов подчиняются обычным правилам геометрии.

Различают качественные и точные диаграммы. Первые применяют для учета взаимных связей. Они помогают сделать предварительную оценку либо используются для полноценной замены вычислений. Другие создают с учетом полученных результатов, которые определяют размеры и направленность отдельных векторов.

Круговая диаграмма

Допустим, что надо изучить изменение параметров тока в цепи при разных значениях сопротивления резистора в диапазоне от нуля до бесконечности. В этой схеме напряжение на выходе (U) будет равно сумме значений (UR и UL) на каждом из элементов. Индуктивный характер второй величины подразумевает перпендикулярное взаимное расположение, что хорошо видно на части рисунка б). Образованные треугольники отлично вписываются в сегмент окружности 180 градусов. Эта кривая соответствует всем возможным точкам, через которые проходит конец вектора UR при соответствующем изменении электрического сопротивления. Вторая диаграмма в) демонстрирует отставание тока по фазе на угол 90°.

Линейная диаграмма

Здесь изображен двухполюсный элемент с активной и реактивной составляющими проводимости (G и jB, соответственно). Аналогичными параметрами обладает классический колебательный контур, созданный с применением параллельной схемы. Отмеченные выше параметры можно изобразить векторами, которые расположены постоянно под углом 90°. Изменение реактивной компоненты сопровождается перемещением вектора тока (I1…I3). Образованная линия располагается перпендикулярно U и на расстоянии Ia от нулевой точки оси координат.

Векторные диаграммы и комплексное представление

Такой инструментарий помогает строить наглядные графические схемы колебательных процессов. Аналогичный результат обеспечивает применение комплексных числовых выражений. В этом варианте, кроме оси с действительными, применяют дополнительный координатный отрезок с мнимыми значениями. Для представления вектора пользуются формулой A*ei(wt+f0), где:

  • А – длина;
  • W – угловая скорость;
  • f0 – начальный угол.

Значение действительной части равно A*cos*(w*t+f0). Это выражение описывает типичное гармоническое колебание с базовыми характеристиками.

Примеры применения

В следующих разделах приведены описания задач, которые решают с помощью представленной методики. Следует подчеркнуть, что применение комплексных чисел пригодно для сложных расчетов с высокой точностью. Однако на практике достаточно часто сравнительно простой векторной графики с наглядным отображением исходной информации на одном рисунке.

Механика, гармонический осциллятор

Таким термином обозначают устройство, которое можно вывести из равновесного состояния. После этого система возвращается в сторону исходного положения, причем сила (F) соответствующего воздействия зависит от дальности первичного перемещения (d) прямо пропорционально. Величину ее можно уточнить с помощью постоянного корректирующего коэффициента (k). Отмеченные определения связаны формулой F=-d*k

Формулы для расчета основных параметров гармонического осциллятора

К сведению. Аналогичные процессы происходят в системах иной природы. Пример – создание аналога на основе электротехнического колебательного контура (последовательного или параллельного). Формулы остаются теми же с заменой соответствующих параметров.

Свободные гармонические колебания без затухания

Продолжая изучение темы на примерах механических процессов, можно отметить возможность построения двухмерной схемы. Скорость в этом случае на оси Х отображается так же, как и в одномерном варианте. Однако здесь можно учесть дополнительно фактор ускорения, которое направляют под углом 90° к предыдущему вектору.

Гармонический осциллятор с затуханием и внешней вынуждающей силой

В этом случае также можно воспользоваться для изучения взаимного влияния дополнительных факторов векторной графикой. Как и в предыдущем примере, скорость и другие величины представляют в двухмерном виде. Чтобы правильно моделировать процесс, проверяют суммарное воздействие внешних сил. Его направляют к центру системы (точке равновесия). С применением геометрических формул вычисляют амплитуду механических колебаний после начального воздействия с учетом коэффициента затухания и других значимых факторов.

Расчет электрических цепей

Векторную графику применяют для сравнительно несложных цепей, которые созданы из набора элементов линейной категории: конденсаторы, резисторы, катушки индуктивности. Для более сложных схем пользуются методикой расчета «Комплексных амплитуд», в которой реактивные компоненты определяют с помощью импедансов.

Векторная диаграмма для схемы соединений без нейтрального провода – звезда

Векторная диаграмма в данном случае выполняет функцию вспомогательного чертежа, который упрощает решение геометрических задач. Для катушек и конденсаторов, чтобы не пользоваться комплексным исчислением, вводят специальный термин – реактивное сопротивление. При синусоидальном токе изменение напряжения на индуктивном элементе описывается формулой U=-L*w*I0sin(w*t+f0).

Несложно увидеть подобие с классическим законом Ома. Однако в данном примере изменяется фаза. По этому параметру на конденсаторе напряжение отстает от тока на 90°. В индуктивности – обратное распределение. Эти особенности учитывают при размещении векторов на рисунке. В формуле учитывается частота, которая оказывает влияние на величину этого элемента.

Схемы и векторные диаграммы для идеального элемента и диэлектрика с потерями

Преобразование Фурье

Векторные технологии применяют для анализа спектров радиосигналов в определенном диапазоне. Несмотря на простоту методики, она вполне подходит для получения достаточно точных результатов.

Сложение двух синусоидальных колебаний

В ходе изучения таких источников сигналов рекомендуется работать со сравнительно небольшой разницей частот. Это поможет создать график в удобном для пользователя масштабе.

Фурье-образ прямоугольного сигнала

В этом примере оперируют суммой синусоидальных сигналов. Последовательное сложение векторов образует многоугольник, вращающийся вокруг единой точки. Для правильных расчетов следует учитывать отличия непрерывного и дискретного распределения спектра.

Дифракция

Для этого случая пользуются тем же отображением отдельных синусоид в виде векторов, как и в предыдущем примере. Суммарное значение также вписывается в окружность.

Построение векторной диаграммы напряжений и токов

Для изучения технологии выберем однофазный источник синусоидального напряжения (U). Ток изменяется по формуле I=Im*cos w*t. Подключенная цепь содержит последовательно подключенные компоненты со следующими значениями:

  • резистор: Ur=Im*R*cos w*t;
  • конденсатор: Uc=Im*Rc*cos (w*t-π/2), Rc=1/w*C;
  • катушка: UL= Im*RL*cos(w*t+π/2), RL=w*L.
Читайте также:  Для чего предназначен электродвигатель переменного тока

При прохождении по цепи переменного тока на реактивных элементах будет соответствующий сдвиг фаз. Чтобы построить вектора правильно, рассчитывают амплитуды и учитывают изменение направлений. Ниже приведена последовательность создания графики вручную.

Диаграмма напряжений и токов на отдельных элементах

Далее с применением элементарных правил геометрии проверяют взаимное влияние векторов.

Решение векторного уравнения

На первом рисунке приведен результат сложения двух векторов при условии, когда Uc меньше UL. Добавив значение на сопротивление, получим результирующее напряжение Um. На третьей иллюстрации отмечен общий фазовый сдвиг.

Векторное отображение процессов в параллельном колебательном контуре, резонанс напряжений

В топографической диаграмме начало координат совмещают с так называемой точкой «нулевого потенциала». Такое решение упрощает изучение отдельных участков сложных схем.

Специализированный редактор онлайн

В интернете можно найти программу для построения векторных диаграмм в режиме online.

Видео

Источник



Как построить векторную диаграмму токов и напряжений

Векторные диаграммы — метод графического расчета напряжений и токов в цепях переменного тока, в которых переменные напряжения и токи символически (условно) изображаются с помощью векторов.

В основе метода лежит тот факт, что всякую величину, меняющуюся по синусоидальному закону (смотрите — синусоидальные колебания), можно определить как проекцию на какое-то выбранное направление вектора, вращающегося вокруг своей начальной точки с угловой скоростью, равной угловой частоте колебаний изображаемой переменной величины.

Поэтому всякое переменное напряжение (или переменный ток), меняющееся по синусоидальному закону, можно изображать с помощью такого вектора, вращающегося с угловой скоростью, равной угловой частоте изображаемого тока, причем длина вектора в определенном масштабе изображает амплитуду напряжения, а угол — начальную фазу этого напряжения.

Если рассмотреть электрическую цепь, состоящую из последовательно соединенных источника переменного тока, резистора, индуктивности и конденсатора, где U – мгновенное значение переменного напряжения, а i – это ток в текущий момент времени, причем U изменяется по синусоидальному (косинусоидальному) закону, то для тока можно записать:

Согласно закону сохранения заряда, в любой момент времени ток в цепи имеет одно и то же значение. Следовательно на каждом элементе будет падать напряжение: UR– на активном сопротивлении, UC – на конденсаторе, и UL – на индуктивности. Согласно второму правилу Кирхгофа, напряжение источника будет равно сумме падений напряжений на элементах цепи, и мы имеем право записать:

Заметим, что согласно закону Ома: I = U/R, и тогда U = I*R. Для активного сопротивления значение R определяется исключительно свойствами проводника, оно не зависит ни от тока, ни от момента времени, следовательно ток совпадает по фазе с напряжением, и можно записать:

А вот конденсатор в цепи переменного тока обладает реактивным емкостным сопротивлением, и напряжение на конденсаторе все время отстает по фазе от тока на Пи /2 , значит пишем:

Катушка, обладающая индуктивностью, в цепи переменного тока выступает реактивным индуктивным сопротивлением, и напряжение на катушке в любой момент времени опережает по фазе ток на Пи/ 2 , следовательно, для катушки запишем:

Можно записать теперь сумму падений напряжений, но в общем виде для приложенного к цепи напряжения можно записать:

Видно, что здесь имеет место некий сдвиг фаз, связанный с реактивной составляющей общего сопротивления цепи при протекании по ней переменного тока.

Поскольку в цепях переменного тока и ток и напряжение изменяются по закону косинуса, причем мгновенные значения отличаются между собой лишь фазой, то физики придумали в математических расчетах рассматривать токи и напряжения в цепях переменного тока как векторы, поскольку тригонометрические функции можно описать через векторы. Итак, запишем напряжения в виде векторов:

Используя метод векторных диаграмм, можно вывести, например, закон Ома для данной последовательной цепи в условиях протекания по ней переменного тока.

Согласно закону сохранения электрического заряда, в любой момент времени ток во всех частях данной цепи одинаков, так отложим же векторы токов, построим векторную диаграмму токов:

Пусть в направлении оси Х будет отложен ток Im – амплитудное значение тока в цепи. Напряжение на активном сопротивлении совпадает по фазе с током, значит эти векторы будут сонаправленными, отложим их из одной точки.

Напряжение на конденсаторе отстает на Пи/2 от тока, следовательно откладываем его под прямым углом вниз, перпендикулярно вектору напряжения на активном сопротивлении.

Напряжение на катушке опережает на Пи /2 ток, следовательно откладываем его под прямым углом вверх, перпендикулярно вектору напряжения на активном сопротивлении. Допустим, что для нашего примера UL>UC.

Поскольку мы имеем дело с векторным уравнением, сложим векторы напряжений на реактивных элементах, и получим разницу. Она будет для нашего примера (мы приняли что UL>UC) направлена вверх.

Прибавим теперь вектор напряжения на активном сопротивлении, и получим, по правилу векторного сложения, вектор суммарного напряжения. Так как брали максимальные значения, то и получим вектор амплитудного значения общего напряжения.

Так как ток менялся по закону косинуса, то напряжение тоже меняется по закону косинуса, но со сдвигом фаз. Между током и напряжением есть постоянный сдвиг фаз.

Запишем закон Ома для общего сопротивления Z (импеданса):

Из векторных изображений по Теореме Пифагора можем записать:

После элементарных преобразований получим выражение для полного сопротивления Z цепи переменного тока, состоящей из R, C и L:

Тогда получим выражение для закона Ома для цепи переменного тока:

Заметим, что наибольшее значение тока получатся в цепи при резонансе в условиях, когда:

Косинус фи из наших геометрических построений получается:

Источник