Меню

Как определить действующее значение силы тока по графику

Эффективные (действующие) значения напряжения и силы тока.

В цепи переменного тока его направление и амплитуда меняются с частотой 50 Гц. Однако выделяемая на нагрузке энергия зависит не от направления тока в цепи, а лишь от его абсолютного значения. Всегда можно подобрать такое значение силы постоянного тока, чтобы энергия, выделяемая за некоторое время этим током на участке цепи с сопротивлением R, равнялась энер­гии, выделяемой за то же время переменным током.

Действующее значение силы переменного тока равно силе постоянного тока, выделяющего в проводнике то же количество теплоты, что и переменный ток за то же время. Оно определяется по формуле:

Эффективные действующие значения напряжения и силы тока

.

Действующее значение напряжения определяется аналогично:

Эффективные действующие значения напряжения и силы тока

.

Мощность, определяемая с использованием действующих значений силы тока и напряжения Р = IU, равна средней мощности переменного тока при совпадении фаз колебаний тока и напряжения:

Эффективные действующие значения напряжения и силы тока

.

Последнюю определяют усреднением мгновенной мощности за период колебаний:

Эффективные действующие значения напряжения и силы тока

.

Источник

Действующие значения тока

Действующие значения токаРасчет цепей переменного тока упрощается, если пользоваться понятием действующего (эффективного) значения переменного тока.

Действующее значение переменного тока равно значению такого эквивалентного постоянного тока, который, проходя через то же сопротивление, что и переменный ток, выделяет в нем за период переменного тока то же количество тепла.

Согласно ГОСТ действующие значения обозначаются прописными буквами, т. е ток I , напряжение U.

На шкалах измерительных приборов всегда наносятся действующие значения тока или напряжения.

Если ток изменяется по синусоидальному закону, то действующее значение его составляет 0,707 амплитудного значения тока, т. е.

I = ( I м : √2) = I м: 1,41 = 0,707 I м

То же соотношение имеет место и для синусоидального напряжения, т. е.

Докажем правильность приведенных соотношений. Количество тепла, выделенного постоянным током I в сопротивлении r за период переменного тока Т:

Q’ = I 2 rT

Количество тепла, выделенного переменным током в том же сопротивлении за период Т, может быть выражено через среднее значение мощности Р переменного тока

I 2 rT =РТ.

В последнем выражении согласно данному выше определению значение эквивалентного постоянного тока I равно действующему значению переменного тока. Таким образом, действующее значение тока

Читайте также:  Все про генераторы постоянного тока

Мгновенная мощность при синусоидальном токе p = i 2 r = I 2 мr sin 2 ωt

или, приняв во внимание, что sin 2 α = (11 : 2) — (1 : 2) cos 2α, получим:

p = ( I 2 мr : 2) — ( I 2 мr : 2) cos 2ωt

Мгновенная мощность при синусоидальном токе может быть представлена суммой двух слагаемых постоянной ½ I 2 мr и переменной, изменяющейся по периодическому синусоидальному закону.

Среднее значение мощности синусоидального тока будет равно постоянной слагаемой

так как среднее значение за пер и синусоидальной слагаемой ½ I 2 мr cos 2ωt равно нулю.

Действующее значение переменного синусоидального тока

I = √(P : r) = √ (½ I 2 мr : r) = I м : √2 = 0,707 I м

Так как действующие значения синусоидальных токов и

напряжений в √2 раз меньше амплитудных значений, то вектор, выражающий в одном масштабе амплитудное значение, в другом масштабе представляет действующее значение той же величины. В дальнейшем выбор масштабов векторов будет производиться, исходя из действующих значений.

Пример 5-4. Вольтметр,, включенный в сеть, показал напряжение 380 в.

Определить амплитуду напряжения сети:

UM = √2 U = 1,41 • 380=536 в.

ОБЩИЕ ЗАМЕЧАНИЯ О ЦЕПЯХ ПЕРЕМЕННОГО ТОКА

Любая электрическая цепь обладает параметрами: .сопротивлением r, индуктивностью L и емкостью С,

В цепи постоянного тока при неизменном напряжении будут неизмененными: ток, мощность и запас энергии в электрическом и магнитном полях.

При переменном напряжении на зажимах цепи в ней будет проходить переменный ток, будет изменяться и энергия электрического и магнитного полей. В технике встречаются цели, физические явления в которых определяются наличием одного из параметров r, L или С, тогда как другие параметры выявлены слабо и влиянием их можно пренебречь.

Например, лампу накаливания, нагревательный прибор, реостат можно рассматривать как цепь с сопротивлением r , влиянием емкости и индуктивности которой можно пренебречь.

Цепь ненагруженного трансформатора можно рассматривать как индуктивность, пренебрегая влиянием сопротивления и емкости этой цепи.

Наконец, кабель, работающий вхолостую, можно рас сматривать как емкость, так как влияние индуктивности и сопротивления этой цепи незначительны.

Статья на тему Действующие значения тока

Источник

Действующее значение тока и напряжения

Переменный ток, протекая по проводнику, нагревает его так же, как и постоянный ток. Силу переменного тока удобно оценивать по его тепловому действию (эффекту) или, как го­ворят, по действующей, эффективной его величине.

Читайте также:  Светодиодные лампы для напряжения 12 в постоянного тока

Действующее или эффективное значение переменного тока рав­но силе такого постоянного тока, который, протекая по дан­ному проводнику, выделяет в нем ежесекундно то же количе­ство энергии в виде тепла, что и переменный ток.

Тепловой эффект тока, а значит, и действующие (эффективные) значения переменного тока зависят не только от наибольших значений, которых до­стигает переменный ток, но и от формы тока.

Вообще говоря, в электротехнике, и особенно в радиотехни­ке, приходится иметь дело с токами довольно сложной формы. Но все эти токи могут быть представлены в виде суммы не­скольких синусоидальных токов с различными частотами, ам­плитудами и начальными фазами. Поэтому очень важную роль играет связь между амплитудным и действующем значениями для синусоидального тока.

Если известна амплитуда переменного синусоидального то­ка, то действующее или эффективное его значение определяет­ся по формуле:

Действующее значение тока

то есть эффективное значение синусоидального тока в korenраз меньше его амплитудного значения.

Аналогичная формула применяется и для вычисления эф­фективного значения синусоидального напряжения:

Действующее значение напряжения

Протекая по проводнику, переменный ток создает в нем эффективное падение напряжения, равное произведению эф­фективного значения силы тока на сопротивление проводника, что эквивалентно закону Ома для постоянного тока, то есть:

Действующее падение напряжения

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник



Как определить действующее значение силы тока по графику

«Физика — 11 класс»

Активное сопротивление

Сила тока в цепи с резистором

Есть цепь, состоящая из соединительных проводов и нагрузки с малой индуктивностью и большим сопротивлением R.

Сопротивление R называется активным сопротивлением, т.к. при наличии нагрузки, обладающей этим сопротивлением, цепь поглощает энергию, поступающую от генератора.
Эта энергия превращается во внутреннюю энергию проводников — они нагреваются.
Напряжение на зажимах цепи меняется по гармоническому закону:

u = Um cos ωt

Мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения.
По закону Ома мгновенное значение силы тока:

В проводнике с активным сопротивлением колебания силы тока совпадают по фазе с колебаниями напряжения, а амплитуда силы тока определяется равенством

Читайте также:  Электрический ток его влияние организм человека

Мощность в цепи с резистором

В цепи переменного тока промышленной частоты (v = 50 Гц) сила тока и напряжение меняются.
При прохождении тока по проводнику, например по нити электрической лампочки, количество выделенной энергии также будет меняться во времени.

Мощность в цепи постоянного тока на участке с сопротивлением R определяется формулой

Р = I 2 R

Мгновенная мощность в цепи переменного тока на участке, имеющем активное сопротивление R, определяется формулой

Р = i 2 R

Cреднее значение мощности за период (используем формулу для мгновенного значения силы тока и выражение ):

График зависимости мгновенной мощности от времени (рис.а):

Согласно графику (рис.б) среднее за период значение cos 2ωt равно нулю, а значит равно нулю второе слагаемое в формуле для среднего значения мощности за период.

Тогда средняя мощность равна:

Действующие значения силы тока и напряжения.

Среднее за период значение квадрата силы тока:

Величина, равная квадратному корню из среднего значения квадрата силы тока, называется действующим значением силы переменного тока.
Действующее значение силы переменного тока обозначается через I:

Действующее значение силы переменного тока равно силе такого постоянного тока, при котором в проводнике выделяется то же количество теплоты, что и при переменном токе за то же время.

Действующее значение переменного напряжения определяется аналогично:

Закон Ома для участка цепи переменного тока с резистором в действующих значениях:

В случае электрических колебаний важны общие характеристики колебаний, такие, как амплитуда, период, частота, действующие значения силы тока и напряжения, средняя мощность.
Именно действующие значения силы тока и напряжения регистрируют амперметры и вольтметры переменного тока.

Действующие значения непосредственно определяют среднее значение мощности Р переменного тока:

р = I 2 R = UI.

Итак:
Колебания силы тока в цепи с резистором совпадают по фазе с колебаниями напряжения, а мощность определяется действующими значениями силы тока и напряжения.

Источник: «Физика — 11 класс», учебник Мякишев, Буховцев, Чаругин

Электромагнитные колебания. Физика, учебник для 11 класса — Класс!ная физика

Источник