Электрический потенциал
Публикации по материалам Д. Джанколи. «Физика в двух томах» 1984 г. Том 2.
Электрический потенциал и потенциальная энергия
Понятие энергии исключительно полезно для решения задач механики. Прежде всего энергия сохраняется и поэтому служит важной характеристикой явлений природы. Используя представления об энергии, многие задачи удается решить, не имея детальных сведений о силах или в случае, когда применение законов Ньютона потребовало бы сложных вычислений.
Энергетическим подходом можно воспользоваться и при изучении электрических явлений, и здесь он оказывается чрезвычайно полезным: позволяет не только обобщить закон сохранения энергии, но и в новом аспекте увидеть электрические явления, а также служит средством более просто находить решения, чем путем рассмотрения сил и электрических полей.
Потенциальную энергию можно определить лишь для консервативных сил; работа такой силы по перемещению частицы между двумя точками не зависит от выбранного пути.
Легко видеть, что электростатическая сила является консервативной: сила, с которой один точечный заряд действует на другой, определяется законом Кулона: F = kQ1Q2 /r 2 ; здесь та же обратно пропорциональная зависимость от квадрата расстояния, что и в законе всемирного тяготения: F = Gm1m2 /r 2 . Такие силы консервативны. Сила, действующая на выбранный заряд со стороны любого распределения зарядов, может быть записана в виде суммы кулоновских сил; следовательно, и сила, создаваемая произвольным распределением зарядов, консервативна. А это позволяет ввести потенциальную энергию электростатического поля.
Разность потенциальных энергий точечного заряда q в двух различных точках электрического поля можно определить как работу, совершаемую внешними силами по перемещению заряда (против действия электрической силы) из одной точки в другую. Это равносильно определению изменения потенциальной энергии заряда в поле как взятой с обратным знаком работы, совершаемой самим полем по перемещению заряда из одной точки в другую.
Рассмотрим для примера электрическое поле между двумя пластинами с равным по величине и противоположным по знаку зарядом. Пусть размеры пластин велики по сравнению с расстоянием между ними, и поэтому поле между пластинами можно считать однородным (рис. 24.1).
Поместим в точку а вблизи положительно заряженной пластины точечный положительный заряд q. Электрическая сила, действующая на заряд, будет стремиться переместить его к отрицательной пластине (в точку b), совершая работу по переносу заряда. Под действием силы заряд приобретет ускорение и его кинетическая энергия возрастет; при этом потенциальная энергия уменьшится на величину работы, совершенной электрической силой по перемещению заряда из точки a в точку b. Согласно закону сохранения энергии, потенциальная энергия заряда в электрическом поле перейдет в кинетическую энергию, но полная энергия останется неизменной. Заметим, что положительный заряд q обладает наибольшей потенциальной энергией U вблизи положительной пластины (в этой точке его способность совершать работу над другим телом или системой максимальна). Для отрицательного заряда справедливо обратное: его потенциальная энергия будет максимальна вблизи отрицательной пластины.
Напряженность электрического поля мы определяли как силу, действующую на единичный заряд; аналогично удобно ввести электрический потенциал (или просто потенциал, если это не вызывает недоразумений) как потенциальную энергию единичного заряда. Электрический потенциал обозначается символом V; итак, если в некоторой точке a точечный заряд q обладает потенциальной энергией Ua, то электрический потенциал в этой точке равен Va = Ua /q.
Реально мы измеряем только изменение потенциальной энергии. Соответственно фактически можно измерить лишь разность потенциалов между двумя точками (например, точками a и b на рис. 24.1). Если работа электрических сил по перемещению заряда от точки a в точку b есть Wba (а разность потенциальных энергий соответственно равна этой величине с обратным знаком), то для разности потенциалов можно написать
Единицей электрического потенциала (и разности потенциалов) является джоуль на кулон (Дж/Кл); этой единице присвоено наименование вольт (В) в честь Алессандро Вольты (1745-1827) (он известен как изобретатель электрической батареи); 1 В = 1 Дж/Кл. Заметим, что, согласно данному определению, положительно заряженная пластина на рис. 24.1 имеет более высокий потенциал, чем отрицательная. Таким образом, положительно заряженное тело будет стремиться перейти из точки с более высоким потенциалом в точку с более низким потенциалом, отрицательно заряженное тело — наоборот. Разность потенциалов часто называют электрическим напряжением.
Потенциал в данной точке Va зависит от выбора «нуля» потенциала; как и в случае потенциальной энергии, нулевой уровень может выбираться произвольно, поскольку измерить можно лишь изменение потенциальной энергии (разность потенциалов). Часто за нулевой принимают потенциал земли или проводника, соединенного с землей, и остальные значения потенциалов отсчитывают относительно «земли». (Например, говоря, что потенциал в какой-то точке равен 50 В, имеют в виду, что разность потенциалов между этой точкой и землей равна 50 В.) В иных случаях, как мы увидим, удобно считать нулевым потенциал на бесконечности.
Поскольку электрический потенциал определяется как потенциальная энергия единичного заряда, изменение потенциальной энергии заряда q при перемещении его из точки a в точку b равно
Другими словами, когда заряд q перемещается между точками с разностью потенциалов Vba, его потенциальная энергия изменяется на величину qVba. Если, например, разность потенциалов между пластинами на рис. 24.1 составляет 6 В, то заряд 1 Кл, перемещенный (внешней силой) из точки b в точку a, увеличит свою потенциальную энергию на (1 Кл) (6 В) = 6 Дж. (Перемещаясь же из a в b, он потеряет потенциальную энергию 6 Дж.) Аналогично энергия заряда 2 Кл увеличится на 12 Дж и т. п. Таким образом, электрический потенциал служит мерой изменения потенциальной энергии электрического заряда в данной ситуации. А поскольку потенциальная энергия — это способность совершать работу, электрический потенциал служит мерой той работы, которую может совершить данный заряд. Количество работы зависит как от разности потенциалов, так и от величины заряда.
Чтобы лучше понять смысл электрического потенциала, проведем аналогию с гравитационным полем. Пусть камень падает с вершины скалы. Чем выше скала, тем большей потенциальной энергией обладает камень и тем больше будет его кинетическая энергия, когда он долетит до подножия скалы. Величина кинетической энергии и соответственно работа, которую может совершить камень, зависят от высоты скалы и от массы камня. Точно так же и в электрическом поле изменение потенциальной энергии (и работа, которую можно совершить) зависит от разности потенциалов (эквивалентной высоте скалы) и заряда (эквивалентного массе).
Используемые на практике источники электроэнергии — батареи, электрогенераторы — создают определенную разность потенциалов. Количество энергии, отбираемой от источника, зависит от величины переносимого заряда.
Рассмотрим, например, автомобильную фару, соединенную с аккумулятором, разность потенциалов на зажимах которого равна 12 В. Количество энергии, преобразуемой фарой в свет (и, конечно, в тепло), пропорционально заряду, протекшему через фару, что в свою очередь зависит от того, как долго включена фара. Если за некоторое время через фару прошел заряд 5,0 Кл, то преобразованная фарой энергия составит (5,0 Кл)*(12,0 В) = 60 Дж. Если оставить фару включенной вдвое дольше, то через нее пройдет заряд 10,0 Кл, и количество преобразованной энергии составит (10,0 Кл)*(12,0 В) = 120 Дж.
Эффекты, обусловленные тем или иным распределением зарядов, можно описать как с помощью напряженности электрического поля, так и через электрический потенциал. Между напряженностью поля и потенциалом существует тесная связь. Рассмотрим вначале эту связь для случая однородного электрического поля, например поля между пластинами на рис. 24.1 с разностью потенциалов Vba. Работа электрического поля по перемещению положительного заряда q из точки a в точку b равна
Обратим внимание на то, что величина Vba = Vb — Va отрицательна (Vba Vb , т.е. потенциал положительной пластины выше, чем отрицательной, как мы уже говорили. Положительные заряды стремятся двигаться из области с высоким потенциалом в область с низким потенциалом. Отсюда можно найти Е:
Из последнего равенства видно, что напряженность электрического поля можно измерять как в вольтах на метр (В/м), так и в ньютонах на кулон (Н/Кл). Эти единицы эквивалентны между собой: 1 Н/Кл = 1 Н·м/Кл·м = 1 Дж/Кл·м = 1 В/м.
Чтобы перейти к общему случаю неоднородного электрического поля, вспомним соотношение между силой F и потенциальной энергией U, обусловленной этой силой. Разность потенциальных энергий в двух точках пространства a и b определится формулой
где dl — бесконечно малое перемещение, а интеграл берется вдоль произвольной траектории между точками a и b. В случае электрического поля нас больше интересует разность не потенциальных энергий, а потенциалов:
Напряженность электрического поля Е в любой точке пространства определяется отношением силы к заряду: Е = F/q. Подставляя эти два равенства в формулу, получим
Это и есть общее соотношение, связывающее напряженность электрического поля с разностью потенциалов.
Когда поле однородно, например, на рис. 24.1 вдоль траектории, параллельной силовым линиям, от точки a у положительной пластины до точки b у отрицательной пластины (поскольку направления E и dl всюду совпадают) имеем
где d — расстояние вдоль силовой линии между точками a и b. И вновь знак минус в правой части свидетельствует лишь о том, что на рис. 24.1 Va > Vb .
Продолжение следует. Коротко о следующей публикации:
Эквипотенциальные поверхности.
Электрический потенциал можно представить графически, изображая эквипотенциальные линии или в трех измерениях — эквипотенциальные поверхности.
Замечания и предложения принимаются и приветствуются!
Источник
Потенциал. Разность потенциалов. Напряжение.Эквипотенциальные поверхности
Потенциал. Разность потенциалов. Напряжение.
Потенциал электростатического поля — скалярная величина, равная отношению потенциальной энергии заряда в поле к этому заряду:
— энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.
Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной.
За точку отсчета потенциала выбирают в зависимости от задачи: а) потенциал Земли, б) потенциал бесконечно удаленной точки поля, в) потенциал отрицательной пластины конденсатора.
— следствие принципа суперпозиции полей (потенциалы складываютсяалгебраически).
Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность.
В СИ потенциал измеряется в вольтах:
Разность потенциалов
Напряжение — разность значений потенциала в начальной и конечнойточках траектории.
Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля.
Разность потенциалов (напряжение) не зависит от выбора
Единица разности потенциалов
Напряжение равно 1 В, если при перемещении положительного заряда в 1 Кл вдоль силовых линий поле совершает работу в 1 Дж.
Связь между напряженностью и напряжением.
Из доказанного выше: →
напряженность равна градиенту потенциала (скорости изменения потенциала вдоль направления d).
Из этого соотношения видно:
Эквипотенциальные поверхности.
ЭПП — поверхности равного потенциала.
— работа при перемещении заряда вдоль эквипотенциальной поверхности не совершается;
— вектор напряженности перпендикулярен к ЭПП в каждой ее точке.
Измерение электрического напряжения (разности потенциалов)
Между стержнем и корпусом — электрическое поле. Измерение потенциала кондуктора Измерение напряжения на гальваническом элементе Электрометр дает большую точность, чем вольтметр.
Потенциальная энергия взаимодействия зарядов.
Потенциал поля точечного заряда
Потенциал заряженного шара
а) Внутри шара Е=0, следовательно, потенциалы во всех точках внутри заряженного металлического шара одинаковы (. ) и равны потенциалу на поверхности шара.
б) Снаружи поле шара убывает обратно пропорционально расстоянию от центра шара, как и в случае точечного заряда.
Перераспределение зарядов при контакте заряженных проводников.
Переход зарядов происходит до тех пор, пока потенциалы контактирующих тел не станут равными.
Источник
III. Основы электродинамики
Тестирование онлайн
Работа электростатического поля
Рассмотрим ситуацию: заряд q0 попадает в электростатическое поле. Это электростатическое поле тоже создается каким-то заряженным телом или системой тел, но нас это не интересует. На заряд q0 со стороны поля действует сила, которая может совершать работу и перемещать этот заряд в поле.
Работа электростатического поля не зависит от траектории. Работа поля при перемещении заряда по замкнутой траектории равна нулю. По этой причине силы электростатического поля называются консервативными, а само поле называется потенциальным.
Потенциал
Система «заряд — электростатическое поле» или «заряд — заряд» обладает потенциальной энергией, подобно тому, как система «гравитационное поле — тело» обладает потенциальной энергией.
Физическая скалярная величина, характеризующая энергетическое состояние поля называется потенциалом данной точки поля. В поле помещается заряд q, он обладает потенциальной энергией W. Потенциал — это характеристика электростатического поля.
Вспомним потенциальную энергию в механике. Потенциальная энергия равна нулю, когда тело находится на земле. А когда тело поднимают на некоторую высоту, то говорят, что тело обладает потенциальной энергией.
Касательно потенциальной энергии в электричестве, то здесь нет нулевого уровня потенциальной энергии. Его выбирают произвольно. Поэтому потенциал является относительной физической величиной.
В механике тела стремятся занять положение с наименьшей потенциальной энергией. В электричестве же под действием сил поля положительно заряженное тело стремится переместится из точки с более высоким потенциалом в точку с более низким потенциалом, а отрицательно заряженное тело — наоборот.
Потенциальная энергия поля — это работа, которую выполняет электростатическая сила при перемещении заряда из данной точки поля в точку с нулевым потенциалом.
Рассмотрим частный случай, когда электростатическое поле создается электрическим зарядом Q. Для исследования потенциала такого поля нет необходимости в него вносить заряд q. Можно высчитать потенциал любой точки такого поля, находящейся на расстоянии r от заряда Q.
Диэлектрическая проницаемость среды имеет известное значение (табличное), характеризует среду, в которой существует поле. Для воздуха она равна единице.
Разность потенциалов
Работа поля по перемещению заряда из одной точки в другую, называется разностью потенциалов
Эту формулу можно представить в ином виде
Эквипотенциальная поверхность (линия) — поверхность равного потенциала. Работа по перемещению заряда вдоль эквипотенциальной поверхности равна нулю.
Напряжение
Разность потенциалов называют еще электрическим напряжением при условии, что сторонние силы не действуют или их действием можно пренебречь.
Напряжение между двумя точками в однородном электрическом поле, расположенными по одной линии напряженности, равно произведению модуля вектора напряженности поля на расстояние между этими точками.
От величины напряжения зависит ток в цепи и энергия заряженной частицы.
Принцип суперпозиции
Потенциал поля, созданного несколькими зарядами, равен алгебраической (с учетом знака потенциала) сумме потенциалов полей каждого поля в отдельности
Как определить знак потенциала
При решении задач возникает много путаницы при определении знака потенциала, разности потенциалов, работы.
На рисунке изображены линии напряженности. В какой точке поля потенциал больше?
Верный ответ — точка 1. Вспомним, что линии напряженности начинаются на положительном заряде, а значит положительный заряд находится слева, следовательно максимальным потенциалом обладает крайняя левая точка.
Если происходит исследование поля, которое создается отрицательным зарядом, то потенциал поля вблизи заряда имеет отрицательное значение, в этом легко убедиться, если в формулу подставить заряд со знаком «минус». Чем дальше от отрицательного заряда, тем потенциал поля больше.
Если происходит перемещение положительного заряда вдоль линий напряженности, то разность потенциалов и работа являются положительными. Если вдоль линий напряженности происходит перемещение отрицательного заряда, то разность потенциалов имеет знак «+», работа имеет знак «-«.
Порассуждайте самостоятельно отрицательные или положительные значения будут принимать работа и разность потенциалов, если заряд перемещать в обратном направлении относительно линий напряженности.
Зависимость напряженности и потенциала от расстояния
Потенциал поля, созданного равномерно заряженной сферой радиусом R и зарядом q на расстоянии r от центра сферы, равен
Напряжение в природе
Напряжение в клетках сетчатки глаза при попадания в них света около 0,01 В.
Напряжение в телефонных сетях может достигать 60 В.
Электрический угорь способен создавать напряжение до 650 В.
Энергия взаимодействия зарядов*
Из определения потенциала следует, что потенциальная энергия электростатического взаимодействия двух зарядов q1 и q2, находящихся на расстоянии r друг от друга, численно равна работе, которая совершается при перемещении точечного заряда q2 из бесконечности в данную точку поля, созданного зарядом q1
Аналогично Тогда энергия взаимодействия двух точечных зарядов
Источник
Напряжение и ток
Для того, чтобы электронный компонент совершал полезную работу: лампа — горела, двигатель — вращался, через него должен протекать электрический ток.
Ток создаётся электрическим потенциалом. Если сравнивать течение тока и течение жидкости, то электрический потенциал — это напор, а ток — это струя воды. Наличие потенциала самого по себе не достаточно для создания тока.
Во-первых, необходим проводник по которому ток будет течь. Например: медный провод. Если проводника нет, потенциал «утыкается» в воздух, а воздух очень хорошо препятствует течению электричества. Это аналогично тому, что вода не будет течь пока закрыт кран: давление есть — течения нет. Материалы, не позволяющие току течь называются диэлектриками. Позволяющие течь — проводниками. Позволяющие при одних условиях и не позволяющие при других — полупроводниками.
Во-вторых, необходима разность потенциалов. Ведь если с двух концов водопроводной трубы будет одинаковый напор, каким бы сильным он не был — течения внутри не будет. То же самое и с электричеством. Разность потенциалов называют напряжением.
Потенциал и напряжение (обозначаются буквой U или V) мерятся в вольтах; сила тока (обозначается буквой I) или просто ток — в амперах. В микроэлектронике обычно используются напряжения от долей вольт до десятков вольт и силы тока от долей миллиампер (мА) до сотен миллиампер.
По договорённости считается, что ток течёт в направлении от плюса к минусу. По аналогии как вода течёт из области высокого давления к пустому концу трубы. На самом деле, какое направление положительное, а какое отрицательное — условность. Исторически так сложилось, что открытие отрицательно заряженных электронов, которые и формируют ток, было сделано уже после того, как все договорились, что считать положительным течением тока. Поэтому в силу той ошибки на практике ситуация такова: говорят, что ток течёт из точки А в точку Б, хотя на физическом уровне электроны мчатся от точки Б к точке А. Чтобы не путаться, нужно запомнить: в схемотехнике никто не вспоминает куда перемещаются электроны, положительное течение тока — это течение из точки с большим потенциалом в точку с меньшим; в направлении тока перемещаются положительные заряды. Да, они виртуальные, их не бывает на самом деле, но так удобнее.
Точку цепи, предоставляющую неограниченную возможность возврата/слива отработавших зарядов называют землёй (Ground, GND). Не нужно понимать «землю» в буквальном смысле. Ей может быть и отрицательный полюс батарейки, и корпус автомобиля, и, действительно, планета Земля. Для удобства считают, что земля — это потенциал в 0 В. Все остальные потенциалы считают относительно неё. Кроме того, в схемотехнике практически не пользуются понятием электрического потенциала: говорят, что напряжение в определённой точке составляет 12 В, на самом деле имеют в виду, что разность потенциалов между ней и землёй составляет 12 В.
Источники питания
Проходя по цепи, электрическая энергия расходуется: часть её идёт на совершение полезной работы, часть теряется, превращаясь в тепло. Чтобы устройство работало постоянно, требуется сила, которая бы удерживала напряжение в цепи. Её называют ЭДС (электродвижущая сила, electromotive force, EMF), а создают её источники питания. Примером компонента с ЭДС являются: обычные батарейки, солнечные батареи, трансформатор в блоке питания, моторчик вращаемый хомяком в колесе.
На схемах источник питания может указываться как в явном виде, собственным символом, так и в неявном: обозначается ноль контакт входного напряжения и земля без акцента на то, откуда энергия возьмётся. Таким образом, следующие схемы эквивалентны:
Мощность
Мощность — это количество переносимой энергии за единицу времени. Переносимая электрическая энергия обычно трансформируется конечными устройствами в другие формы: тепло, свет, звук и т.д. Единица измерения мощности — Ватт. Мощность P рассчитывается по формуле:
Различные компоненты расчитаны на разную мощность. Обычно в документации на компонент указывается при каком напряжении он работает и какой ток при этом потребляет. Есть компоненты, которые «возьмут» только то количество тока, которое им необходимо; есть те, которые будут гореть и плавиться, но заберут всё, что дают.
Предоставить нужное количество энергии в нужный момент в определённое место цепи — одна из главных задач разработчика схемы. Реализуется это с помощью соединения базовых компонентов (таких как, например, резисторы и транзисторы) в типовые, шаблонные схемы.
Источник