Меню

Как называется устройство для получения переменного электрического тока

§ 51. Получение и передача переменного электрического тока. Трансформатор —

Вопросы.

1. Какой электрический ток называется переменным? С помощью какого простого опыта его можно получить?

Переменным называется ток, периодически меняющийся со временем по модулю и направлению.
Переменный ток можно получить используя индукционную катушку, гальванометр и магнит. Периодически двигая магнит внутри катушки вверх и вниз можно заметить, стелка гальванометра отклоняется то в одну, то в другую сторону.

2. Где используют переменный электрический ток?

Переменный электрический ток используют в быту и промышленности.

3. На каком явлении основано действие наиболее распространенных в настоящее время генераторов переменного тока?

Работа генераторов переменного тока основана на явлении электромагнитной индукции.

4. Расскажите об устройстве и принципе действия промышленного генератора.

Промышленный генератор переменного электрического тока состоит из статора и ротора. Статор — неподвижно закреплен, а ротор — вращается. Ротор и статор — обмотаны особым образом медной проволокой. На ротор подается постоянный электрический ток, и таким образом он является электромагнитом. При вращении ротора, создаваемое им магнитное поле тоже вращается. При этом переменный магнитный поток пронизывает обмотку статора и в нем возникает переменный электрический ток.

5. Чем приводится во вращение ротор генератора на тепловой электростанции? на гидроэлектростанции?

Паровой и водяной турбиной.

6. Почему в гидрогенераторах используют многополюсные роторы?

Для создания тока стандартной частоты, т.к. скорость вращения водяных турбин невысока.

7. Какова стандартная частота промышленного тока, применяемого в России и многих других странах?

Стандартная частота в России — 50 Гц, в США — 60 Гц.

8. По какому физическому закону можно определить потери электроэнергии в ЛЭП?

По закону Джоуля — Ленца: Q= I 2 Rt, где Q- энергия затрачиваемая на нагревание проводов, I- действующее значение силы переменного тока в цепи, R — сопротивление проводов, t — время.

9. Что следует сделать для уменьшения потерь электроэнергии при ее передаче?

Из закона Джоуля- Ленца следует, что для этого следует уменьшать сопротивление цепи R и силу тока I.

10. Для чего при уменьшении силы тока во столько же раз повышают его напряжение перед подачей в ЛЭП?

Для того, чтобы не снижать мощность тока P= UI. Передача тока небольшой мощности на большие расстояния экономически невыгодна (надо строить дорогие линии электропередач, станции и подстанции, а в результате не все потребители смогут пользоваться электричеством).

11. Расскажите об устройстве, принципе действия и применении трансформаторов.

1. Электростанции России вырабатывают переменный ток частотой 50 Гц. Определите период этого тока.

2. По графику (см. рис. 140) определите период, частоту и амплитуду колебаний силы тока i.

Источник

Получение переменного электрического тока. Трансформатор

Урок 34. Физика 9 класс (ФГОС)

Доступ к видеоуроку ограничен

Конспект урока «Получение переменного электрического тока. Трансформатор»

Явление электромагнитной индукции, открытое Фарадеем, оказало определяющее влияние на всё дальнейшее развитие технической цивилизации. Один из великих учёных девятнадцатого века Герман Гельмгольц говорил, что «до тех пор, пока люди пользуются благами электричества, они всегда будут с благодарностью вспоминать имя Фарадея».

Рассмотрим ещё раз получение индукционного тока при помощи рамки и подковообразного магнита. Как вы помните, при вращении рамки в однородном магнитном поле, в ней возникает индукционный ток.

При этом стрелка гальванометра отклоняется то в одну то во вторую сторону. Это свидетельствует о том, что направление индукционного тока, как и его сила, непрерывно меняются от своего наибольшего значения, когда рамка с током расположена вдоль линий магнитной индукции, до нуля, когда плоскость рамки перпендикулярна линиям магнитной индукции.

Если в качестве индикатора использовать не гальванометр, а, например, осциллограф, и повторить эксперимент, то при вращении рамки в магнитном поле осциллограф запишет все изменения тока. Нетрудно увидеть, что ток, возникающий в рамке, изменяется синусоидально.

Так вот, ток, периодически меняющийся со временем как по модулю, так и по направлению, называется переменным током.

Именно переменный ток используется в настоящее время в осветительной сети наших домов, а также во многих отраслях промышленности.

Рассмотренный нами опыт представляет собой пример работы простейшего генератора электрического тока. В настоящее время переменный ток получают в основном с помощью электромеханических индукционных генераторов, преобразующих механическую энергию в электрическую.

Индукционными они называются потому, что их действие основано на явлении электромагнитной индукции. Только в этих генераторах вращается не обмотка, в которой индуцируется переменный ток, а электромагнит. Вращающаяся часть генератора называется ротором и является источником магнитного поля.

Ротор располагается внутри стальной станины цилиндрической формы, называемой статором.

Во внутренней части статора имеются специальные пазы, в которые укладывается медный провод в виде витков. При вращении ротора в этих витках индуцируется переменный ток.

Ротор также имеет сложную форму и представляет собой стальной сердечник с навитой на него обмоткой, по которой протекает постоянный электрический ток. Создаваемое этим током магнитное поле вращается вместе с ротором.

Ротор генератора вращается при помощи какого-либо двигателя: на тепловых электростанциях с помощью паровой турбины, в небольших переносных генераторах — при помощи двигателя внутреннего сгорания, а на гидроэлектростанциях — с помощью гидротурбины.

Читайте также:  Плотность тока в материале

Обратите внимание на то, что ротор гидрогенератора имеет не одну, а несколько пар магнитных полюсов. Дело в том, что на современных гидроэлектростанциях падающая вода вращает вал электрогенератора с частотой один — два оборота в секунду. Таким образом, если бы якорь генератора имел только одну обмотку, то получался бы переменный ток частотой 1—2 Гц. А стандартная частота переменного тока, используемого в электрических сетях России и странах Европы, равна 50 Гц. Кстати, это означает, что примерно через каждые 0,02 секунды направление тока меняется на противоположное. Такая частота переменного тока была выбрана с участием русского учёного Михаила Осиповича Доливо-Добровольского.

Однако, например, в США по рекомендации известного сербского учёного Николы Тесла, стандартная частота переменного тока равна 60 Гц.

Поэтому для получения переменного тока промышленной частоты якорь должен содержать несколько обмоток, позволяющих увеличить частоту вырабатываемого тока до необходимой величины.

И так, электрическую энергию производят на электростанциях. А для её передачи потребителям, часто находящимся очень далеко от станции, строят линии электропередач. Но при передаче электроэнергии неизбежны потери, связанные с нагреванием проводов: чем дальше от электростанции находится потребитель тока, тем больше энергии тратится на нагревание проводов и тем меньше её доходит до потребителя.

Потери на нагревание определяются законом Джоуля-Ленца:

Из него следует, что уменьшить потери можно двумя способами: это либо уменьшить сопротивление проводов, либо уменьшить силу тока в них.

Из восьмого класса вы знаете, что сопротивление будет тем меньше, чем больше площадь поперечного сечения проводника, и чем меньше его длина и удельное сопротивление металла, из которого он изготовлен.

Уменьшить длину проводов не предоставляется возможным. Из относительно недорогих металлов наименьшим удельным сопротивлением обладает медь и алюминий, из которых собственно и делают провода. Увеличивать же толщину проводов экономически невыгодно, так как это ведёт к перерасходу дорогостоящего цветного металла.

Следовательно, снижение потерь можно добиться только за счёт уменьшения силы тока. Но, чтобы не снижать мощности тока, уменьшение силы тока возможно только при увеличении напряжения.

Так, например, электроэнергия Волжской ГЭС передаётся в Москву при напряжении около 500 кВ, а от Саяно-Шушенской ГЭС — при напряжении около 750 кВ. Хотя на самих электростанциях генераторы вырабатывают электрическую энергию при напряжениях, не превышающих 20 кВ. Без такого преобразования силы тока и напряжения передача электроэнергии на большие расстояния становится невыгодной из-за существенных потерь.

Решение этой важнейшей технической задачи стало возможным только после изобретения трансформатора — устройства, служащего для преобразования силы и напряжения переменного тока при неизменной частоте.

Первый трансформатор был изобретён в тысяча восемьсот семьдесят шестом году русским учёным Павлом Николаевичем Яблочковым для питания изобретённых им же электрических свечей — нового в то время источника света.

Простейший трансформатор представляет собой две изолированные друг от друга катушки (их ещё называют обмотками), намотанные на общий замкнутый сердечник. По одной из обмоток (первичной) пропускается преобразуемый переменный ток, а вторичная обмотка соединяется с потребителем. Обратите внимание, что число витков в обмотках отличаются.

Протекающий по первичной обмотке переменный ток, создаёт в замкнутом сердечнике магнитное поле. Для уменьшения потерь энергии, сердечник ламинируют, то есть изготавливают из тонких, изолированных друг от друга пластин. Изолирующее покрытие пластин ограничивает индукционные токи в пределах каждого слоя, что заметно снижает силу индукционного тока. Таким образом, сердечник концентрирует магнитное поле так, что магнитный поток существует практически только внутри него и одинаков во всех его сечениях. Этот магнитный поток возбуждает ток самоиндукции в каждом витке первичной катушки. Этот же магнитный поток пронизывает витки вторичной катушки и создаёт в каждом её витке индукционный ток. В результате на концах вторичной обмотки возникает переменное напряжение. Значение этого напряжения определяется коэффициентом трансформации.

Коэффициентом трансформации называется отношение числа витков в первичной обмотке к числу витков во вторичной обмотке. В старших классах будет показано, что коэффициент трансформации можно определить и как отношение входного и выходного напряжений.

Как видно из формулы, в зависимости от числа витков в обмотках, коэффициент трансформации может быть меньше или больше единицы. В зависимости от этого различают повышающий трансформатор и понижающий…

Закрепления материала.

Но вернёмся к вопросу о передаче электроэнергии от электростанции к месту её потребления. Как мы говорили ранее, напряжение, вырабатываемое генератором, обычно не превышает 20 кВ. А для оптимальной передачи электроэнергии на большие расстояния требуется напряжение порядка сотен киловольт. Поэтому ток с электростанции сначала подаётся на расположенную неподалёку повышающую трансформаторную подстанцию, а затем подаётся в линии электропередач. Поскольку очень высокое напряжение не может быть предложено потребителю, то в конце линии его подают поочерёдно на несколько трансформаторных подстанций, понижающих напряжение до 380 В или 220 В, а затем — на предприятия или в жилые дома.

Читайте также:  Тренди тік ток 2021

Источник

Как получают переменный электрический ток

Электромагнитная индукция и закон Фарадея

Майкл Фарадей в 1831 году открыл закономерность, в последствии названной его именем – закон Фарадея. В своих опытах он использовал 2 установки. Первая состояла из металлического сердечника с двумя намотанными и не связанными между собой проводниками. Когда он подключал один из них к источнику питания, то стрелка гальванометра, подключенного ко второму проводнику, дёргалась. Так было доказано влияние магнитного поля на движение заряженных частиц в проводнике.

Второй установкой является диск Фарадея. Это металлический диск, к которому подключено два скользящих проводника, а они в свою очередь соединены с гальванометром. Диск вращают вблизи магнита, а при вращении на гальванометре также отклоняется стрелка.

Диск Фарадея

Итак, выводом этих опытов была формула, которая связывает прохождение проводника через силовые линии магнитного поля.

ЭДС индукции

Здесь: E – ЭДС индукции, N – число витков проводника, который перемещают в магнитном поле, dФ/dt – скорость изменения магнитного потока относительно проводника.

На практике также используют формулу, с помощью которой можно определить ЭДС через величину магнитной индукции.

e = B*l*v*sinα

Если вспомнить формулу связывающую магнитный поток и магнитную индукцию, то можно предположить, как происходил вывод формулы выше.

Ф=B*S*cosα

Так зарождалась генерация тока. Но давайте поговорим, как получают переменный ток ближе к практике.

Способы получения переменного тока

Допустим у нас есть рамка из проводящего материала. Поместим её в магнитное поле. Согласно упомянутым выше формула, если рамку начать вращать, через неё потечет электрический ток. При равномерном вращении на концах этой рамки получится переменный синусоидальный ток.

Вращение рамки в магнитном поле

Это связано с тем, что в зависимости от положения по оси вращения рамку пронизывает разное число силовых линий. Соответственно и величина ЭДС наводится не равномерно, а согласно положению рамки, как и знак этой величины. Что вы видите наг графике выше. При вращении рамки в магнитном поле от скорости вращения зависит как частота переменного тока, так и величина ЭДС на выводах рамки. Чтобы достичь определенной величины ЭДС при фиксированной частоте – делают больше витков. Таким образом получается не рамка, а катушка.

Получить переменный ток в промышленных масштабах можно таким же образом, как описано выше. На практике нашли широкое применение электростанции с генераторами переменного тока. При этом используются синхронные генераторы. Поскольку таким образом легче контролировать как частоту, так и величину ЭДС переменного тока, и они могут выдерживать кратковременные токовые перегрузки во много раз.

По числу фаз на электростанциях используются трёхфазные генераторы. Это компромиссное решение, связанное с экономической целесообразностью и техническим требованием создания вращающегося магнитного поля для работы электродвигателей, которые составляют львиную долю от всего электрооборудования в промышленности.

В зависимости от рода силы, которая приводит в движение ротор, число полюсов может быть различным. Если ротор вращается со скоростью 3000 об/мин, то для получения переменного тока с промышленной частотой в 50 Гц нужен генератор с 2 полюсами, для 1500 об/мин – с 4 полюсами и так далее. На рисунки ниже вы видите устройство генератора синхронного типа.

Устройство генератора переменного тока

На роторе находятся катушки или обмотка возбуждения, ток к ней поступает от генератора-возбудителя (Генератор Постоянного Тока – ГПТ) или от полупроводникового возбудителя через щеточный аппарат. Щетки располагаются на кольцах, в отличие от коллекторных машин, в результате чего магнитное поле обмоток возбуждение не меняется по направлению и знаку, но меняется по величине – при регулировании тока возбудителя. Таким образом автоматически подбираются оптимальные условия для поддержки рабочего режима генератора переменного тока.

Итак, получить переменный ток в промышленных масштабах удалось способом, основанном на явлениях электромагнитной индукции, а именно с помощью трёхфазных генераторов. В быту используют и однофазные и трёхфазные генераторы. Последние рекомендуется приобретать для строительных работ. Дело в том, что большое число электрического инструмента и станков могут работать от трёх фаз. Это электродвигатели разнообразных бетономешалок, циркулярных пил, да и мощные сварочные аппараты также питаются от трёхфазной сети. Причем для таких задач подходят именно синхронные генераторы, асинхронные не подходят – из-за их плохой работы с устройствами, у которых большие пусковые токи. Асинхронные бытовые электростанции больше подходят для резервного электроснабжения частных домов и дач.

Электронные преобразователи

Однако не всегда рационально или удобно использовать бензиновые или дизельные бытовые электростанции. Есть выход – получить однофазный или трёхфазный переменный электрический ток из постоянного. Для этого используют преобразователи или, как их еще называют инверторы.

Инвертор – это устройство, которое преобразует величину и род электрического тока. В магазинах можно найти инверторы 12-220 или 24-220 Вольт. Соответственно эти приборы постоянные 12 или 24 Вольта превращают в 220В переменного тока с частотой в 50Гц. Схема простейшего подобного преобразователя на базе драйвера для полумостового преобразователя IR2153 изображена ниже.

Схема преобразователя

Такая схема выдаёт модифицированную синусоиду на выходе. Она не совсем подходит для питания индуктивной нагрузки, типа двигателей и дрелей. Но если не на постоянной основе – то вполне можно использовать и такой простой инвертор.

Читайте также:  Как ваттметр включается в цепь тока

Чистая и модифицированная синусоида

Преобразователи постоянного тока в переменный с чистой синусоидой на выходе стоят значительно дороже, а их схемы значительно сложнее.

Важно! Приобретая дешевые платы-модули с «алиэкспресс» не рассчитывайте ни на чистый синус, ни на 50Гц частоту. Большинство таких устройств выдают высокочастотный ток с напряжением 220В. Его можно использовать для питания различных нагревателей и ламп накаливания.

Мы кратко рассмотрели принципы получения переменного тока в домашних условиях и в промышленных масштабах. Физика этого процесса известна уже почти 200 лет, тем не менее основным популяризатором этого способа получить электрическую энергию был Никола Тесла в конце XIX – первой половине XX века. Большинство современного бытового и промышленного оборудования ориентированы на использования именного переменного тока для электропитания.

Напоследок рекомендуем просмотреть видео, на котором наглядно показывается как работает генератор переменного тока:

Источник



Получение переменного электрического тока

Переменным током, в традиционном понимании, называется ток, получаемый благодаря переменному, гармонически изменяющемуся (синусоидальному) напряжению. Переменное напряжение генерируется на электростанции, и постоянно присутствует в любой настенной розетке.

Для передачи электроэнергии на большие расстояния также используется именно переменный ток, поскольку переменное напряжение легко повышается при помощи трансформатора, и таким образом электрическую энергию можно передать на расстояние с минимальными потерями, а затем обратно понизить с помощью трансформатора до приемлемого для бытовой сети значения.

Получение переменного электрического тока

Генерация переменного напряжения (и соответственно тока) осуществляется на электростанции, где промышленные генер аторы переменного тока приводятся во вращение от турбин, движимых паром высокого давления. Пар получается из воды, которая сильно разогревается теплом, выделяемым в процессе ядерной реакции или при сжигании ископаемого топлива, в зависимости от типа конкретной электростанции. В любом случае, вращение генератора переменного тока — это и есть причина образования переменного напряжения и тока.

Для ответа на вопрос, как в генераторе образуется переменный ток, достаточно рассмотреть элементарную модель, состоящую из куска провода, и магнита, попутно вспомнив силу Лоренца и закон электромагнитной индукции. Допустим, провод длиной 10 см лежит на столе, а у нас в руке сильный неодимовый магнит, размер которого немного меньше провода. Присоединим к концам провода чувствительный гальванометр или стрелочный вольтметр.

Модель

Поднесем магнит одним из полюсов близко к проводу, на расстояние менее 1 см, и быстро проведем магнитом над проводом поперек него слева направо — пересечем магнитным полем магнита проводник. Стрелка гальванометра резко отклонится в определенную сторону, затем вернется в исходное положение.

Перевернем магнит другим полюсом к проводу. И снова, движением руки слева на право, быстро пересечем магнитным полем экспериментальный проводник. Стрелка гальванометра резко отклонилась в другую сторону, затем вернулась в исходное положение. Вместо того чтобы переворачивать магнит, можно сначала совершить движение слева направо, а потом — справа налево, эффект смены направления генерируемого тока получится аналогичным.

Эксперимент показал, что для получения переменного напряжения нам необходимо либо двигать магнит поперек провода вправо-влево, либо пересекать проводник чередующимися магнитными полюсами. В генераторе на электростанции (и во всех традиционных генераторах переменного тока) применен второй вариант.

Получение переменной электродвижущей силы

Принцип действия генератора — получение переменной электродвижущей силы (напряжения)

Получение синусоидального напряженияПеременное синусоидальное напряжение

Генератор переменного тока на электростанции состоит из ротора и статора. Механическая энергия вращающейся турбины передается ротору. Магнитное поле ротора сконцентрировано на его полюсных наконечниках, и создается либо закрепленными на нем постоянными магнитами, либо током постоянного напряжения, протекающего в медной обмотке ротора.

Обычно обмотка статора состоит из трех отдельных обмоток, смещенных относительно друг друга в пространстве, что приводит к возникновению переменного напряжения и тока в каждой из трех обмоток. Таким образом, каждая из трех обмоток статора является источником переменного напряжения, причем мгновенные значения напряжений смещены по фазе относительно друг друга на 120 градусов. Это и называется трехфазный переменный ток.

Получение трехфазного переменного напряжения и тока

Получение трехфазного переменного напряжения и тока

Ротор генератора с двумя магнитными полюсами, вращающийся с частотой 3000 оборотов в минуту, дает 50 пересечений каждой фазы обмотки статора за секунду. А поскольку между магнитными полюсами имеется нулевая точка, то есть место, где индукция магнитного поля равна нулю, то во время каждого полного оборота ротора наведенное в обмотке напряжение переходит через ноль, затем изменяет полярность. В результате напряжение на выходе имеет форму синусоиды и частоту 50 Гц.

Когда источник переменного напряжения соединен с нагрузкой, в цепи получается переменный ток. Напряжение и максимально допустимый ток статора тем больше, чем сильнее магнитное поле ротора, т.е. чем больше ток протекающий в обмотках ротора. У синхронных генераторов с внешним возбуждением напряжение и ток в обмотках ротора создает тиристорная система возбуждения или возбудитель — небольшой генератор на валу основного генератора.

Источник