Закон полного тока простыми словами
В радиотехнических схемах применяют трансформаторы и другие изделия, функциональность которых определена индуктивными характеристиками. В данной публикации представлен закон полного тока, который используют для предварительных расчетов и коррекций устройств с магнитными компонентами.
Для создания работоспособной конструкции нужно правильно вычислить параметры ее компонентов
Определение полного тока
Сутью данного закона является определение взаимной связи между электрическим током и образованным его протеканием магнитным полем. Эта особенность выявлена экспериментальным путем в первой половине XIX века. Позднее была создана формулировка, устанавливающая закон полного тока для магнитного поля. Классическое определение приведено ниже. Однако начинать изучение темы следует с базовых принципов.
Схематическое изображение физических параметров
На рисунке отмечены следующие компоненты:
- I∑ – суммарный (полный) ток;
- S – пронизываемая (dS – элементарная) площадка;
- dL – элементарный линейный участок.
- J∑ – плотность распределения токов;
- L – кольцевой замкнутый контур;
- H – напряженность магнитного поля в векторном представлении.
Магнитное напряжение вдоль контура
Напряженность электрического поля
В представленном примере для изучения берут проводники, через которые пропускают электрический ток. В совокупности они образуют сечение с мнимой площадью (S), которая ограничена неким контуром. Пользуясь классическим правилом «буравчика», несложно установить направление вектора (di или Н). Понятно, что в данном случае рассматривается дискретная величина. Вектор магнитной напряженности и полный ток связаны следующей формулой:
Полный ток
Из приведенного соотношения видно, что сумма токов равна перемещению вектора напряженности магнитного поля по замкнутому контуру. Его циркуляция описывается интегралом приведенных выше компонентов. Из рассмотренных пропорций несложно сделать вывод о том, что полный ток будет зависеть от плотности, контура и элементарной площадки:
Закон Ома для неоднородного участка
К сведению. В некоторых ситуациях удобнее пользоваться дифференциальной формой представления электромагнитных параметров: ∫S*J*∑ds = ∫S*rotH*ds.
Закон в интегральном представлении
Рассмотрим бесконечно прямой проводник, по которому циркулирует электрический ток, образующий поле, ограниченное контуром в виде окружности. Плоскость, пронизывающая проводник, – это круг, очерчённый линией данной окружности (см. рис. 1).
Рис. 1. Поле бесконечно прямого тока
Воспользуемся методом разбиения контура на мизерные участки dl (элементарные векторы длины контура). Пусть φ – угол между векторами dl и B. В нашем случае, при суммировании отрезков, вектор индукции B поворачивается так, что он очерчивает круг, то есть угол φ → 2π.
Из теоремы Остроградского-Гаусса вытекает формула:
Учитывая, что cos φ = 1,
Данная формула – постулат, подтверждённый экспериментально. Согласно этому постулату, циркуляция вектора B по окружности, то есть по замкнутому контуру, равна μ0I, где μ0 = 1/c2 ε0 – магнитная постоянная.
Ориентация вектора dB определяется путём применения правила буравчика. Это направление всегда перпендикулярно вектору плотности. Если проводников будет несколько (например, N), тогда
Каждый ток, с учётом знака, необходимо учитывать такое количество раз, которое соответствует числу его охватов контуром.
Ток берётся со знаком «+», если он по направлению обхода образует правовинтовую систему. При этом, отрицательным считается ток противоположного направления.
Заметим, что формула справедлива только для вакуума. В обычных условиях необходимо учитывать проницаемость среды.
Если ток распределён в пространстве (произвольный ток), тогда
где S – натянутая на контур поверхность, j – объёмная плотность тока. С учётом последнего выражения, формулу полного тока в вакууме можно записать:
Рис. 2. Иллюстрация закона для вакуума
- Закон справедлив не только для бесконечно прямолинейного проводника, но и для контуров, произвольной конфигурации.
- Циркуляция вектора магнитной индукции B сориентированного вдоль магнитных линий, всегда отлична от нуля.
- Ненулевая циркуляция свидетельствует о том, что магнитное поле прямолинейного, бесконечно длинного проводника не потенциально. Такое поле называют вихревым, либо соленоидным.
Магнитодвижущая сила
Представленный закон применяют для расчета рабочих характеристик разных устройств:
- одно,- и трехфазных трансформаторов с подключением к сети 220 (380) V, соответственно;
- электродвигателей постоянного тока;
- катушек с тороидальными сердечниками;
- электрических приводов реле и клапанов;
- аналоговых измерительных приборов и датчиков;
- электромагнитов, которые установлены в подъемных механизмах, системах водоочистки.
Простая магнитная цепь
Ампер — что это такое
Для подробного изучения подойдет несложный пример. В цепи обеспечивается перемещение тока по замкнутому контуру с применением катушки индукции. Созданная магнитодвижущая сила (F) будет зависеть от силы тока (I) в проводнике и количества сделанных витков (W):
По классическим определениям, ток в цепи появляется при создании разницы потенциалов между точками подключения источника ЭДС. Подобным образом показанная выше сила F провоцирует образование магнитного потока. В данном случае аналогичным образом можно использовать не только правило буравчика, но и технологии расчета цепей. Необходимо только корректно применять отдельные понятия. Так, электрическому сопротивлению соответствует магнитный аналог.
При разделении такого контура на два сегмента справедливым будет следующее выражение:
Н1*L1 + H2*L2 = I *W,
где Н1 и H2 (L1 и L2) напряженность (длина) соответствующих частей.
Последовательным преобразованием можно получить удобную для практического применения формулу закона полного тока:
- H1 = B1/ma1;
- B1 = Ф/S1;
- H2 = B2/ma2;
- B2 = Ф/S2;
- I*W = Ф*L1/ma1*S1 + Ф*L1/ma1*S1 = Ф*Rm1 + Ф*Rm2.
Кроме площади поперечного сечения (S), здесь приведены магнитные параметры разных участков (1 и 2):
- Ф – поток;
- В – индукция;
- ma – проницаемость.
Из этого выражения нетрудно получить значение магнитного сопротивления для каждого участка:
По аналогии с формулой Ома для электрических цепей можно вычислить магнитное напряжение:
C учетом частоты питающего сигнала (w) магнитный поток будет зависеть от силы тока и суммарного сопротивления участков цепи:
К сведению. По этим же принципам допустимо применение законов Кирхгофа. Так суммарная величина входящих и выходящих магнитных потоков будет равной.
Практическое применение в расчетах
Закон Ома для переменного тока
Закон полного тока является основным законом при расчете магнитных цепей и дает возможность без особых усилий определять напряженность поля.
Примеры магнитных цепей
Магнитная цепь являет собой комплекс физических тел, обладающих сильно выраженными магнитными свойствами, магнитодвижущих сил и других условий, по которым смыкается магнитный поток. Магнитодвижущая сила определяется как произведение количества витков катушки на протекающий в ней электрический ток:
- F – магнитодвижущая сила;
- ω – количество витков в катушке;
- I – электрический ток.
Подобно тому, как электродвижущая сила электрической цепи провоцирует возникновение тока, так и магнитодвижущая сила магнитной цепи вызывает магнитный поток. Направление магнитодвижущей силы в схемотехнике определяется на основании правила буравчика.
Параметры, описывающие характеристики магнитной или электрической цепи, являются тождественными. Аналогичными являются и мероприятия по расчету цепей. Постоянные токи в электрических цепях возникают благодаря электродвижущей силе. В магнитных цепях эту функцию выполняет магнитодвижущая сила обмоток. Характеристика сопротивления току в электрической цепи имеет свою аналогию в магнитной цепи в виде магнитного сопротивления.
Неразветвленная магнитная цепь
Согласно закону полного тока, выражение, описывающее процессы в магнитной цепи (рис. выше), выглядит так:
- H1 – напряженность поля первого участка;
- H2 – напряженность поля второго участка;
- L1 – длина первого однородного участка;
- L2 – длина второго однородного участка.
Поскольку напряженность магнитного поля и магнитная индукции на первом и втором участках равны:
- H1=B1/µа1, где:
- B1 – магнитная индукция;
- µа1 – магнитная проницаемость первого участка.
- B 1=Φ/S1, где:
- Φ – магнитный поток;
- S1 – площадь поперечного сечения первого участка.
- H2=B2/µа2, где:
- B2 – магнитная индукция второго участка;
- µа2 – магнитная проницаемость второго участка.
- B 2=Φ/S2, где:
- Φ – магнитный поток;
- S2 – площадь поперечного сечения второго участка.
выражение, описывающее закон полного тока, преобразовывается в:
Iω=ΦL1/µа1S1+ ΦL2/µа2S2=ΦRм1+ΦRм2, где:
- Rм1=L1/µа1S1 – магнитное сопротивление первого участка;
- Rм2=L2/µа2S2 – магнитное сопротивление второго участка.
Проводя аналогии с электрической цепью, произведение магнитного потока на магнитное сопротивление является магнитным напряжением:
Если выделить из формулы магнитный поток, получается формула, представляющая собой закон Ома для магнитной цепи:
Φ= Iω/Rм1+Rм2= Iω/∑Rм.
Для магнитной цепи, не имеющей магнитодвижущей силы, выражение будет выглядеть как:
Аналогично электрическим цепям на магнитные цепи распространяются постулаты Кирхгофа:
- Сумма магнитных потоков, втекающих в узел, равна сумме магнитных потоков, вытекающих из узла. Выражение выглядит как ∑Φк=0;
- Сумма магнитодвижущих сил, находящихся в контуре, равна сумме падений напряжений на всех отрезках цепи, что соответствует выражению ∑Iω=∑Uм=∑HL.
Закон полного тока для магнитных цепей стоит на одном уровне с основными законами, касающимися электрических цепей. Понимание закона полного тока позволит с легкостью проводить расчет и подбор необходимых устройств, в основе работы которых лежат магнитные потоки.
Определение закона полного тока
Важные выводы и пояснения:
- напряженность зависит от источника тока;
- индукция выполняет силовые функции воздействия на движущиеся по цепи заряды;
- параметры поля формируются магнитными свойствами определенной среды.
На практике усиление тока сопровождается пропорциональным изменением поля (магнитной индукции). Базовое правило справедливо при рассмотрении цепей, созданных из серебра, влажного или сухого воздуха, других материалов.
Измененные правила действуют в железе или иной среде с выраженными ферромагнитными свойствами. Именно такие решения применяют при создании трансформаторов и других изделий для улучшения потребительских характеристик.
Для упрощения следует начать изучение физических величин и расчетов на примере нейтральной среды. При отсутствии ферромагнитных параметров можно изобразить магнитное поле несколькими замкнутыми линиями длиной L. В этом случае полный ток (I) будет зависеть от индукции (B) следующим образом:
Здесь m – магнитная постоянная, которая в стандартной системе единиц измерения приблизительно равна 1,257*10-7 Генри на метр (Гн/м).
Важно! В действительности подобные идеальные условия встречаются редко, когда индукция сохраняет одинаковые параметры вдоль всей линии контура.
Прямой проводник и тороид
Поле формируется перпендикулярно прямому длинному проводнику. Его линии образуют набор из множества окружностей. Центр каждой из них соответствует продольной оси проводника. Расстояние от нее до кольца – r. Длину (L) вычисляют по стандартной геометрической пропорции:
Если разместить витки симметрично на тороидальном сердечнике из электрически нейтрального фарфора для устранения искажений, линии магнитного поля будут проходить внутри равномерно. Кольца, как показано на рисунке с вырезанным сегментом, образуют замкнутые контуры. В такой конструкции обеспечивается неизменность индукции. Для каждой отдельной линии можно пользоваться формулой:
Суммарное значение (полный ток) получают умножением на количество витков (N).
На основе приведенных данных нетрудно вычислить индукцию, которая будет создана внутри нейтрального тороидального кольца при определенной силе тока:
Эта пропорция позволяет сделать определение удельного полного тока:
Зная размеры тора и другие исходные параметры, вычисляют индукцию у внутреннего и наружного края. При необходимости делают коррекции с помощью изменения толщины кольца, количества витков.
Намагничивание железного кольца
Если на основу из ферромагнитного материала намотать две обмотки (изолированные), будут создан наглядный образец для измерений. Изменяя силу тока в одном проводнике, можно наблюдать за изменением электродвижущей силы по подключенному к другой паре выводов прибору.
На графике приведены результаты эксперимента при использовании кольца, сделанного из железа с минимальным количеством примесей. Если применить закон полного тока для рассмотренного выше примера с нейтральным сердечником в точке «а», должно получиться приблизительно 5*10-4 Тл. Между тем в действительности напряженность составляет для этой силы тока 1,2 Тл при одинаковых размерах тока и количестве сделанных витков.
Корректируют вычисления с учетом поправочного коэффициента – магнитной проницаемости. Следует подчеркнуть, что это параметр не линейный. Максимальный полезный эффект наблюдается при относительно небольших значениях силы тока. Значительный спад после порогового уровня насыщения ограничивает практическое применение рассмотренных свойств.
Формула закона полного тока
В этом разделе приведены формулы для уточненных расчетов и примеры типовых конструкций. Для интегральных вычислений вполне подходит закон Гаусса, который применяют в электростатике.
Интегральная формула закона полного тока
Пояснения:
- L – обозначает замкнутый контур, созданный по произвольной траектории;
- векторы В и r направлены перпендикулярно;
- dl (dl0) – элементы произвольной части (силовой линии), соответственно;
- ϕ – угол между элементами.
Из формулы на рисунке понятно, что циркуляция вектора индукции не равняется нулю. Такие поля называют «соленоидальными» или вихревыми. В отличие от электродинамики, в данном случае отсутствуют потенциальные характеристики. Как и в базовом определении, полный ток определяется циркуляцией магнитной индукции (векторное выражение) по контуру произвольной формы, окружающему сумму токов.
Формула для расчета индуктивности, которую создает длинный соленоид
В этом примере n – число витков обмотки на единицу длины основы.
Расчет параметров поля внутри тороида
Параметры:
- количество сделанных витков – N;
- внешний, внутренний и произвольный радиусы – R1, R2 и r.
Следует помнить! Вне тороида магнитное поле равно нулю.
Рассмотренные методики расчетов применяют с учетом реальных условий. Особое значение при выборе компонентов конструкций уделяют ферромагнитным свойствам сердечника. Проводники для обмоток выбирают с запасом, учитывая максимальную силу тока источника.
Влияние среды
Рассмотренные отношения для закона токов и полей, действующих не в вакууме, а в магнитной среде, приобретают несколько иной вид. В этом случае помимо основных токовых составляющих вводится понятие микроскопических токов, возникающих в магнетике, например, или в любом подобном ему материале.
Нужное соотношение в полном виде выводится из теоремы о векторной циркуляции магнитной индукции B. Простым языком она выражается в следующем виде. Суммарное значение вектора B при интегрировании по выбранному контуру равно сумме охватываемых им макро токов, умноженной на коэффициент магнитной постоянной.
В итоге формула для «В» в веществе определяется выражением:
Интеграл от B по dL = интегралу от Bl по dL= m(I+I1)
где: dL – дискретный элемент контура, направленный вдоль его обхода, Вl– составляющая в направлении касательной в произвольной точке,бI и I1 – ток проводимости и микроскопический (молекулярный) ток.
Если поле действует в среде, состоящей из произвольных материалов – должны учитываться микроскопические токи, характерные именно для этих структур.
Эти выкладки также верны для поля, создаваемого в соленоиде или в любой другой среде, обладающей конечной магнитной проницаемостью.
Источник
Закон полного тока для магнитного поля
В электрических цепях всегда присутствует магнитное поле, которое оказывает электромагнитное взаимодействие с токами этих цепей. Данный фактор учитывается при расчетах цепей, а закон полного тока для магнитного поля является инструментом для подобных вычислений.
Если поднести магнитную стрелку к проводнику, по которому течёт ток, её положение изменится. Это говорит о наличии вокруг проводника кроме электрического ещё и магнитного поля. В результате многочисленных исследований электромагнитных явлений установлено, что существует взаимное влияние полей, имеющих электрическую и магнитную природу.
Физический смысл закона
Рассмотрим упрощённый вариант влияния магнитной индукции на электрическое поле. Для этого представим себе два параллельных проводника, по которым циркулируют постоянные токи, например, I1 и I2. Вблизи этих проводников образуется поле, которое мысленно можно ограничить неким контуром L – воображаемой замкнутой фигурой, плоскость которой пересекает потоки движущихся зарядов.
В пределах плоскости, охватываемой контуром L, формируется магнитное поле, напряжённость которого распределена в соответствии с направлениями токов. При этом циркуляция вектора магнитного поля в плоскости замкнутого контура прямо пропорциональна сумме токов, пронзающих данный контур. Полный электрический ток равен векторной сумме его составляющих:
Направления векторов I1 и I2 определяется по правилу буравчика.
Приведённые выше рассуждения можно рассматривать в качестве примера изображающего упрощённую модель частного случая рассматриваемого закона. В действительности же, процессы взаимного влияния магнитных и электрических полей намного сложнее, и они описываются интегральными и дифференциальными уравнениями Максвелла.
Упрощенный подход
Выразить закон в дифференциальном представлении довольно сложно. Потребуется вводить дополнительные компоненты. Необходимо учитывать влияние молекулярных токов. Наличие вихревых токов является причиной образования магнитного вихревого поля в пределах контура.
Вектор электрического смещения сравним с вектором напряжённости присутствующего магнитного поля H. При этом Ориентация вектора смещения зависит от быстроты изменения магнитной индукции.
Для упрощения вычислений на практике часто пользуются формулами закона для магнитного поля полных токов, представленных в виде суммирования предельно малых участков контура, с учётом влияния вихревых полей. При реализации этого метода контур мысленно разбивают на бесконечно малые отрезки. На этих отрезках проводники считаются прямолинейными, а магнитное поле на таких участках контура считают однородным.
На одном дискретном участке вектор напряженности Um определяется по формуле: Um= HL×ΔL, где HL– циркуляция вектора напряжённости на участке ΔL контура L. Тогда суммарная напряжённость UL вдоль всего контура вычисляется по формуле: UL= Σ HL× ΔL.
Закон в интегральном представлении
Рассмотрим бесконечно прямой проводник, по которому циркулирует электрический ток, образующий поле, ограниченное контуром в виде окружности. Плоскость, пронизывающая проводник, – это круг, очерчённый линией данной окружности (см. рис. 1).
Рис. 1. Поле бесконечно прямого тока
Воспользуемся методом разбиения контура на мизерные участки dl (элементарные векторы длины контура). Пусть φ – угол между векторами dl и B. В нашем случае, при суммировании отрезков, вектор индукции B поворачивается так, что он очерчивает круг, то есть угол φ → 2π.
Из теоремы Остроградского-Гаусса вытекает формула:
Учитывая, что cos φ = 1,
Данная формула – постулат, подтверждённый экспериментально. Согласно этому постулату, циркуляция вектора B по окружности, то есть по замкнутому контуру, равна μ0I, где μ0 = 1/c 2 ε0 – магнитная постоянная.
Ориентация вектора dB определяется путём применения правила буравчика. Это направление всегда перпендикулярно вектору плотности. Если проводников будет несколько (например, N), тогда
Каждый ток, с учётом знака, необходимо учитывать такое количество раз, которое соответствует числу его охватов контуром.
Ток берётся со знаком «+», если он по направлению обхода образует правовинтовую систему. При этом, отрицательным считается ток противоположного направления.
Заметим, что формула справедлива только для вакуума. В обычных условиях необходимо учитывать проницаемость среды.
Если ток распределён в пространстве (произвольный ток), тогда
где S – натянутая на контур поверхность, j – объёмная плотность тока. С учётом последнего выражения, формулу полного тока в вакууме можно записать:
Рис. 2. Иллюстрация закона для вакуума
- Закон справедлив не только для бесконечно прямолинейного проводника, но и для контуров, произвольной конфигурации.
- Циркуляция вектора магнитной индукции B сориентированного вдоль магнитных линий, всегда отлична от нуля.
- Ненулевая циркуляция свидетельствует о том, что магнитное поле прямолинейного, бесконечно длинного проводника не потенциально. Такое поле называют вихревым, либо соленоидным.
Влияние среды
На результат взаимодействия магнитных потоков и постоянных токов влияет среда. Вещества обладают магнитной проницаемостью в потоке вектора индукции, что вносит коррективы на взаимодействие магнитной среды с токами проводимости. В однородной изотопной среде, где значение вектора электромагнитной индукции одинаково во всех точках, векторы B и H связаны между собой следующим соотношением:
где H — напряжённость магнитного поля, символом μ обозначена магнитная проницаемость.
Носители электрических зарядов создают собственные микротоки. Циркуляция вектора, характеризующего электростатическое поле, всегда нулевая. Поэтому электростатические поля, в отличие от магнитных, являются потенциальными.
Вектор B отображает результирующее значение полей макро- и микротоков. Линии электростатической индукции всегда остаются замкнутыми, в том числе и на положительных зарядах.
Рис. 3. Закон полного тока в веществе
Для полей, которые действуют в среде, состоящей из разных веществ, необходимо учитывать микротоки, характерные именно для конкретных структур, образующих данную среду.
Утверждение, изложенное выше, верно для полей соленоидов или любой другой структуры, обладающей свойствами конечной магнитной проницаемости.
Торойд
В электротехнике часто приходится иметь дело с катушками разных видов и размеров. Катушка, образованная витками намотанными на сердечник тороидальной формы (в виде бублика), называется тороидом. Важными характеристиками сердечника тора являются его радиусы — внутренний (R1) и внешний (R2).
Поле внутри соленоида на расстоянии r от центра равно:
Выводы
На основании изложенного, приходим к заключению:
- Закон полного тока устанавливает зависимость между напряжённостью магнитного поля и перемещением в этом поле электрических зарядов.
- Действие закона распространяется на все среды, при допустимых плотностях тока.
- Закон также выполняется в полях постоянных магнитов.
При вычислениях не имеет значения, какую формулу мы используем – суть закона остаётся неизменной: он выражает взаимодействия, которые происходят между токами и создаваемыми ими магнитными полями, пронизывающими замкнутый контур.
Выводы закона учитываются при конструировании электромагнитных устройств. Наличие завихрений в электромагнитных полях приводит к снижению КПД. Кроме того, вихревые поля негативно влияют на работоспособность электронных элементов, расположенных в зоне их действий.
Конструкторы электротехнических приборов стремятся свести к минимуму таких влияний. Например, вместо обычных соленоидов применяют тороидальные катушки, за пределами которых отсутствуют электромагнитные поля.
Источник
Как математически записывается закон полного тока
Закон в интегральном представлении
Рассмотрим бесконечно прямой проводник, по которому циркулирует электрический ток, образующий поле, ограниченное контуром в виде окружности. Плоскость, пронизывающая проводник, – это круг, очерчённый линией данной окружности (см. рис. 1).
Рис. 1. Поле бесконечно прямого тока
Воспользуемся методом разбиения контура на мизерные участки dl (элементарные векторы длины контура). Пусть φ – угол между векторами dl и B. В нашем случае, при суммировании отрезков, вектор индукции B поворачивается так, что он очерчивает круг, то есть угол φ → 2π.
Из теоремы Остроградского-Гаусса вытекает формула:
Учитывая, что cos φ = 1,
Данная формула – постулат, подтверждённый экспериментально. Согласно этому постулату, циркуляция вектора B по окружности, то есть по замкнутому контуру, равна μ0I, где μ0 = 1/c2 ε0 – магнитная постоянная.
Ориентация вектора dB определяется путём применения правила буравчика. Это направление всегда перпендикулярно вектору плотности. Если проводников будет несколько (например, N), тогда
Каждый ток, с учётом знака, необходимо учитывать такое количество раз, которое соответствует числу его охватов контуром.
Ток берётся со знаком «+», если он по направлению обхода образует правовинтовую систему. При этом, отрицательным считается ток противоположного направления.
Заметим, что формула справедлива только для вакуума. В обычных условиях необходимо учитывать проницаемость среды.
Если ток распределён в пространстве (произвольный ток), тогда
где S – натянутая на контур поверхность, j – объёмная плотность тока. С учётом последнего выражения, формулу полного тока в вакууме можно записать:
Рис. 2. Иллюстрация закона для вакуума
- Закон справедлив не только для бесконечно прямолинейного проводника, но и для контуров, произвольной конфигурации.
- Циркуляция вектора магнитной индукции B сориентированного вдоль магнитных линий, всегда отлична от нуля.
- Ненулевая циркуляция свидетельствует о том, что магнитное поле прямолинейного, бесконечно длинного проводника не потенциально. Такое поле называют вихревым, либо соленоидным.
Для справки
В самой полной и объемлющей системе измерений СГС напряженность магнитного поля представляется в эрстедах (Э). В другой действующей системе (СИ) она выражается в амперах на один метр (А/метр). Сегодня эрстед постепенно вытесняется более удобной в работе единицей – ампером на метр. При переводе результатов измерений или расчетов из СИ в СГС используется следующее соотношение:
1 Э = 1000/(4π) А/м ≈ 79,5775 Ампер/метр.
В заключительной части обзора отметим, что независимо от того, какая используется формулировка закона полных токов – суть его остается неизменной. Своими словами это можно представить так: он выражает отношения между токами, пронизывающими данный контур и создаваемыми в веществе магнитными полями.
Напоследок рекомендуем просмотреть полезное видео по теме статьи:
Материалы по теме:
- Что такое электрическое поле
- Зависимость сопротивления проводника от температуры
- Величайшие открытия Николы Тесла
Опубликовано:
03.07.2019
Обновлено: 03.07.2019
9.1.4. Неразветвленная магнитная цепь
Задачей расчета
неразветвленной магнитной цепи в большинстве случаев является определение МДС F= Iw, необходимой для того, чтобы получить
заданные значения магнитного потока или магнитной индукции в некотором участке магнитопровода (чаще всего в воздушном зазоре).
На рис. 9.9 приведен пример
неразветвленной магнитной цепи — магнитопровод
постоянного поперечного сечения S1 с зазором. На этом же рисунке указаны другие
геометрические размеры обоих участков магнитопровода:
средняя длина l1
магнитной линии первого участка из ферромагнитного материала и длина l2 второго участка — воздушного зазора. Магнитные свойства
ферромагнитного материала заданы основной кривой намагничивания В(Н) (рис. 9.10) и тем самым по (9.4)
зависимостью ma(Н).
По закону полного тока (9.2)
где H1 и H2 — напряженности магнитного поля в первом и втором
участках.
В воздушном зазоре значения
магнитной индукции В2 и
напряженности H2
связаны простым соотношением В2 = mН2, а для участка из ферромагнитного
материала В1 = ma1 Н1.
Кроме того, в неразветвленной
магнитной цепи магнитный поток одинаков в любом поперечном сечении магнитопровода:
Ф
= В1S1 =B2S2, (9.6)
где S1 и S2 — площади поперечного сечения участка из ферромагнитного
материала и воздушного зазора.
Если задан магнитный поток Ф, то по (9.6) найдем значения индукций B1 и B2. Напряженность поля H1 определим по основной кривой намагничивания (рис. 9.10), а
H2= B2m. Далее по (9.5) вычислим необходимое значение МДС.
Сложнее
обратная задача: расчет магнитного потока при заданной
МДС F.
Заменив в (9.5) напряженности
магнитного поля значениями индукции, получим
или с учетом (9.6)
где rMk= lkSkmak — магнитное сопротивление k-гoучастка магнитной цепи, причем магнитное сопротивление k-гo участка нелинейное, если зависимость В(H) для этого участка нелинейная (рис. 9.10), т.е. mak≠ const.
Для участка цепи с нелинейным
магнитным сопротивлением rMможно построить вебер-амперную характеристику — зависимость
магнитного потока Ф от магнитного напряжения UMна этом участке магнитопровода.
Вебер-амперная характеристика участка магнитопровода
рассчитывается по основной кривой намагничивания ферромагнитного материала В(H). Чтобы построить вебер-амперную характеристику, нужно ординаты и
абсциссы всех точек основной кривой намагничивания умножить соответственно на
площадь поперечного сечения участка Sи его среднюю длину l.
На рис. 9.11 приведены
вебер-амперные характеристики Ф(UM1) для ферромагнитного участка с нелинейным магнитным
сопротивлением rM1 и Ф(UM2) для воздушного зазора с постоянным магнитным сопротивлением rM2 = l2 S2m магнитопровода по
рис. 9.9.
Между расчетами нелинейных
электрических цепей постоянного тока и магнитных цепей с
постоянными МДС нетрудно установить аналогию.
Действительно, из уравнения (27.7) следует, что магнитное напряжение на участке
магнитной цепи равно произведению магнитного сопротивления участка на магнитный
поток UM = rMФ. Эта зависимость аналогична закону Ома
для резистивного элемента электрической цепи постоянного тока U = rI.
Сумма магнитных напряжений в контуре магнитной цепи равна сумме МДС этого
контура SUM = SF, что аналогично второму закону Кирхгофа для электрических цепей
постоянного тока SU = SE.
Продолжая дальше аналогию
между электрическими цепями постоянного тока и магнитными цепями с постоянными МДС, представим неразветвленную
магнитную цепь (рис. 9.9) схемой замещения (рис. 9.12, а).
В качестве иллюстрации
ограничимся применением для анализа неразветвленной магнитной цепи графических
методов: метода сложения вебер-амперных характеристик (рис. 9.11) и метода нагрузочной
характеристики (рис. 9.12, б).
Согласно первому методу
построим вебер-амперную характеристику всей неразветвленной магнитной цепи Ф(UM1 + UM2), графически складывая по напряжению вебер-амперные
характеристики ее двух участков. При известной МДС F= Iwпо вебер-амперной характеристике всей магнитной цепи
определим рабочую точку А, т. е. магнитный поток Ф,
а по вебер-амперным характеристикам участков магнитопровода
— магнитные напряжения на каждом из них.
Согласно второму методу для
второго (линейного) участка построим нагрузочную характеристику
т. е. прямую, проходящую
через точку Fна оси абсцисс
и точку FrM2на оси ординат. Точка пересечения А нагрузочной
характеристики с вебер-амперной характеристикой ферромагнитного участка цепи Ф(UM1) определяет магнитный поток Ф в цепи и магнитные
напряжения на ферромагнитном участке UM1 и воздушном зазоре UM2. Значение индукции в воздушном зазоре B2 = Ф/S2.
9.1.1. Элементы магнитной цепи
Магнитной цепью (магнитопроводом) называется совокупность различных
ферромагнитных и неферромагнитных частей электротехнических устройств для создания магнитных полей нужных конфигурации и
интенсивности. В зависимости от принципа действия электротехнического
устройства магнитное поле может возбуждаться либо постоянным магнитом, либо
катушкой с током, расположенной в той или иной части магнитной цепи.
К простейшим магнитным цепям
относится тороид из однородного ферромагнитного
материала (рис. 9.1). Такие магнитопроводы
применяются в многообмоточных трансформаторах, магнитных усилителях, в
элементах ЭВМ и других электротехнических устройствах.
На рис. 9.2 показана
более сложная магнитная цепь электромеханического устройства, подвижная часть
которого втягивается в электромагнит при постоянном (или переменном) токе в
катушке. Сила притяжения зависит от положения подвижной части магнитопровода.
На рис. 9.3 изображена
магнитная цепь, в которой магнитное поле возбуждается постоянным магнитом. Если
подвижная катушка, расположенная на ферромагнитном цилиндре, включена в цепь
постоянного тока, то на нее действует вращающий момент. Поворот катушки с током
практически не влияет на магнитное поле магнитной цепи. Такая магнитная цепь
есть, например, в измерительных приборах магнитоэлектрической системы.
Рассмотренные магнитные цепи,
как и другие возможные конструкции, можно разделить на неразветвленные
магнитные цепи (рис. 9.1 и 9.3), в которых магнитный поток в любом сечении цепи
одинаков, и разветвленные магнитные цепи (рис. 9.2), в которых магнитные потоки
в различных сечениях цепи различны. В общем случае разветвленные магнитные цепи
могут быть сложной конфигурации, например в электрических двигателях,
генераторах и других устройствах.
В большинстве случаев
магнитную цепь следует считать нелинейной, и лишь при определенных допущениях и
определенных режимах работы магнитную цепь можно считать линейной.
Источник
Закон полного тока
В радиотехнических схемах применяют трансформаторы и другие изделия, функциональность которых определена индуктивными характеристиками. В данной публикации представлен закон полного тока, который используют для предварительных расчетов и коррекций устройств с магнитными компонентами.
Определение полного тока
Сутью данного закона является определение взаимной связи между электрическим током и образованным его протеканием магнитным полем. Эта особенность выявлена экспериментальным путем в первой половине XIX века. Позднее была создана формулировка, устанавливающая закон полного тока для магнитного поля. Классическое определение приведено ниже. Однако начинать изучение темы следует с базовых принципов.
На рисунке отмечены следующие компоненты:
- I∑ – суммарный (полный) ток;
- S – пронизываемая (dS – элементарная) площадка;
- dL – элементарный линейный участок.
- J∑ – плотность распределения токов;
- L – кольцевой замкнутый контур;
- H – напряженность магнитного поля в векторном представлении.
Магнитное напряжение вдоль контура
В представленном примере для изучения берут проводники, через которые пропускают электрический ток. В совокупности они образуют сечение с мнимой площадью (S), которая ограничена неким контуром. Пользуясь классическим правилом «буравчика», несложно установить направление вектора (di или Н). Понятно, что в данном случае рассматривается дискретная величина. Вектор магнитной напряженности и полный ток связаны следующей формулой:
Полный ток
Из приведенного соотношения видно, что сумма токов равна перемещению вектора напряженности магнитного поля по замкнутому контуру. Его циркуляция описывается интегралом приведенных выше компонентов. Из рассмотренных пропорций несложно сделать вывод о том, что полный ток будет зависеть от плотности, контура и элементарной площадки:
К сведению. В некоторых ситуациях удобнее пользоваться дифференциальной формой представления электромагнитных параметров: ∫S*J*∑ds = ∫S*rotH*ds.
Магнитодвижущая сила
Представленный закон применяют для расчета рабочих характеристик разных устройств:
- одно,- и трехфазных трансформаторов с подключением к сети 220 (380) V, соответственно;
- электродвигателей постоянного тока;
- катушек с тороидальными сердечниками;
- электрических приводов реле и клапанов;
- аналоговых измерительных приборов и датчиков;
- электромагнитов, которые установлены в подъемных механизмах, системах водоочистки.
Для подробного изучения подойдет несложный пример. В цепи обеспечивается перемещение тока по замкнутому контуру с применением катушки индукции. Созданная магнитодвижущая сила (F) будет зависеть от силы тока (I) в проводнике и количества сделанных витков (W):
По классическим определениям, ток в цепи появляется при создании разницы потенциалов между точками подключения источника ЭДС. Подобным образом показанная выше сила F провоцирует образование магнитного потока. В данном случае аналогичным образом можно использовать не только правило буравчика, но и технологии расчета цепей. Необходимо только корректно применять отдельные понятия. Так, электрическому сопротивлению соответствует магнитный аналог.
При разделении такого контура на два сегмента справедливым будет следующее выражение:
Н1*L1 + H2*L2 = I *W,
где Н1 и H2 (L1 и L2) напряженность (длина) соответствующих частей.
Последовательным преобразованием можно получить удобную для практического применения формулу закона полного тока:
- H1 = B1/ma1;
- B1 = Ф/S1;
- H2 = B2/ma2;
- B2 = Ф/S2;
- I*W = Ф*L1/ma1*S1 + Ф*L1/ma1*S1 = Ф*Rm1 + Ф*Rm2.
Кроме площади поперечного сечения (S), здесь приведены магнитные параметры разных участков (1 и 2):
- Ф – поток;
- В – индукция;
- ma – проницаемость.
Из этого выражения нетрудно получить значение магнитного сопротивления для каждого участка:
По аналогии с формулой Ома для электрических цепей можно вычислить магнитное напряжение:
C учетом частоты питающего сигнала (w) магнитный поток будет зависеть от силы тока и суммарного сопротивления участков цепи:
К сведению. По этим же принципам допустимо применение законов Кирхгофа. Так суммарная величина входящих и выходящих магнитных потоков будет равной.
Определение закона полного тока
Важные выводы и пояснения:
- напряженность зависит от источника тока;
- индукция выполняет силовые функции воздействия на движущиеся по цепи заряды;
- параметры поля формируются магнитными свойствами определенной среды.
На практике усиление тока сопровождается пропорциональным изменением поля (магнитной индукции). Базовое правило справедливо при рассмотрении цепей, созданных из серебра, влажного или сухого воздуха, других материалов.
Измененные правила действуют в железе или иной среде с выраженными ферромагнитными свойствами. Именно такие решения применяют при создании трансформаторов и других изделий для улучшения потребительских характеристик.
Для упрощения следует начать изучение физических величин и расчетов на примере нейтральной среды. При отсутствии ферромагнитных параметров можно изобразить магнитное поле несколькими замкнутыми линиями длиной L. В этом случае полный ток (I) будет зависеть от индукции (B) следующим образом:
Здесь m – магнитная постоянная, которая в стандартной системе единиц измерения приблизительно равна 1,257*10-7 Генри на метр (Гн/м).
Важно! В действительности подобные идеальные условия встречаются редко, когда индукция сохраняет одинаковые параметры вдоль всей линии контура.
Поле формируется перпендикулярно прямому длинному проводнику. Его линии образуют набор из множества окружностей. Центр каждой из них соответствует продольной оси проводника. Расстояние от нее до кольца – r. Длину (L) вычисляют по стандартной геометрической пропорции:
Если разместить витки симметрично на тороидальном сердечнике из электрически нейтрального фарфора для устранения искажений, линии магнитного поля будут проходить внутри равномерно. Кольца, как показано на рисунке с вырезанным сегментом, образуют замкнутые контуры. В такой конструкции обеспечивается неизменность индукции. Для каждой отдельной линии можно пользоваться формулой:
Суммарное значение (полный ток) получают умножением на количество витков (N).
На основе приведенных данных нетрудно вычислить индукцию, которая будет создана внутри нейтрального тороидального кольца при определенной силе тока:
Эта пропорция позволяет сделать определение удельного полного тока:
Зная размеры тора и другие исходные параметры, вычисляют индукцию у внутреннего и наружного края. При необходимости делают коррекции с помощью изменения толщины кольца, количества витков.
Если на основу из ферромагнитного материала намотать две обмотки (изолированные), будут создан наглядный образец для измерений. Изменяя силу тока в одном проводнике, можно наблюдать за изменением электродвижущей силы по подключенному к другой паре выводов прибору.
На графике приведены результаты эксперимента при использовании кольца, сделанного из железа с минимальным количеством примесей. Если применить закон полного тока для рассмотренного выше примера с нейтральным сердечником в точке «а», должно получиться приблизительно 5*10-4 Тл. Между тем в действительности напряженность составляет для этой силы тока 1,2 Тл при одинаковых размерах тока и количестве сделанных витков.
Корректируют вычисления с учетом поправочного коэффициента – магнитной проницаемости. Следует подчеркнуть, что это параметр не линейный. Максимальный полезный эффект наблюдается при относительно небольших значениях силы тока. Значительный спад после порогового уровня насыщения ограничивает практическое применение рассмотренных свойств.
Формула закона полного тока
В этом разделе приведены формулы для уточненных расчетов и примеры типовых конструкций. Для интегральных вычислений вполне подходит закон Гаусса, который применяют в электростатике.
Пояснения:
- L – обозначает замкнутый контур, созданный по произвольной траектории;
- векторы В и r направлены перпендикулярно;
- dl (dl0) – элементы произвольной части (силовой линии), соответственно;
- ϕ – угол между элементами.
Из формулы на рисунке понятно, что циркуляция вектора индукции не равняется нулю. Такие поля называют «соленоидальными» или вихревыми. В отличие от электродинамики, в данном случае отсутствуют потенциальные характеристики. Как и в базовом определении, полный ток определяется циркуляцией магнитной индукции (векторное выражение) по контуру произвольной формы, окружающему сумму токов.
В этом примере n – число витков обмотки на единицу длины основы.
Параметры:
- количество сделанных витков – N;
- внешний, внутренний и произвольный радиусы – R1, R2 и r.
Следует помнить! Вне тороида магнитное поле равно нулю.
Рассмотренные методики расчетов применяют с учетом реальных условий. Особое значение при выборе компонентов конструкций уделяют ферромагнитным свойствам сердечника. Проводники для обмоток выбирают с запасом, учитывая максимальную силу тока источника.
Видео
Источник