Меню

Измеритель тока утечки конденсаторов

Простой измеритель токов утечки конденсаторов и полупроводниковых ключей

Analog Devices AD8661 ADR391

Схема, показанная на Рисунке 1, состоит из повторителя напряжения на микросхеме IC1 и источника опорного напряжения IC2. IC1 – это выпускаемый Analog Devices операционный усилитель (ОУ) AD8661 с гарантированным входным током смещения менее 1 пА при типовом значении 0.3 пА, а в качестве ADR391 используется прецизионный источник опорного напряжения ADR391, также производимый компанией Analog Devices. Входное напряжение смещения ОУ, корректируемое на этапе производства, не превышает 100 мкВ, а типовое значение составляет 30 мкВ. Такие характеристики позволяют использовать этот усилитель для оценки саморазряда конденсаторов практически любых типов. Токи утечки полупроводниковых танталовых конденсаторов и конденсаторов с высококачественными органическими диэлектриками значительно превышают входной ток смещения повторителя напряжения IC1. Сначала тестируемый конденсатор (capacitor under test – CUT) заряжается до уровня опорного напряжения 2.5 В путем подключения точки А к выходу IC2. Затем, в какое-то удобное время, точка A отсоединяется от источника опорного напряжения, и цифровой вольтметр измеряет выходное напряжение повторителя. Измеряемый относительно начального значения спад напряжения VO должен находиться в пределах от 0.1 до 0.5 В. Ток утечки будет равен

C – емкость CUT,
tMEAS – время между отключением CUT от источника 2.5 В и моментом считывания при падении напряжения на VO.

Рисунок 1. С помощью этого простого устройства сначала подают опорное напряжение
на тестируемый конденсатор, а затем измеряют спад напряжения во времени
на выходе повторителя напряжения (а). Схема также может измерять ток утечки
обратносмещенного активного устройства (б).

Измеритель позволяет также определять токи утечки обратносмещенных диодов и различных коммутирующих приборов в выключенном состоянии, таких как полевые транзисторы с p-n переходом, MOSFET, биполярные транзисторы, тиристоры и IGBT. В этом случае CUT заменяется параллельным соединением тестируемого устройства (device under test – DUT) и дополнительного конденсатора CADD (Рисунок 1б). Процедура измерения и формула для оценки величины тока утечки остаются таким же, как для тока утечки конденсатора, но вместо емкости CUT в формулу (1) подставляется емкость CADD. При исследовании маломощных устройств в качестве CADD хорошо работает конденсатор с полистирольным диэлектриком емкостью 10 нФ. Однако для мощных устройств емкость CADD должна как минимум в 10 раз превышать паразитную емкость DUT при напряжении 0 В.

Кроме того, устройство на Рисунке 1б способно измерять сопротивления резисторов от десятков МОм примерно до 2 ТОм. Только теперь ток в формуле (1) – это ток, идущий через резистор RAGND, обусловленный приблизительно опорным напряжением. Сопротивление RAGND примерно равно

При всех измерениях спад напряжения VO не должен превышать примерно одной пятой опорного напряжения, чтобы экспоненциальный разряд можно было аппроксимировать линейным. Ток утечки кнопочного переключателя S1 на Рисунке 1а должен быть меньше 1 пА. Переключателем с малой утечкой могут служить скрученные изолированные провода, оканчивающиеся позолоченными контактами из фосфористой бронзы. Позолоченные металлические детали можно найти внутри любого высококачественного разъема. Кроме того, можно зажимать DUT или CUT между двумя позолоченными контактами, сделанными из аналогичных частей разъема. Для минимизации утечек схема была собрана навесным монтажом без использования печатной платы.

Материалы по теме

Перевод: AlexAAN по заказу РадиоЛоцман

Источник

Даже невздутый кондёр может оказаться неисправным. Проверяем конденсаторы на ESR-метре

Всем привет, после моего поста про ремонт монитора мне начали задавать вопросы, мол с чего я решил, что поменянные конденсаторы неисправны? Ну что же, приступим.

Сегодня я буду рассматривать три конденсатора на 25в, два из которых на 1000мкф и один на 470мкф. Один конденсатор вздутый, второй внешне целый (как раз из поста про монитор), а один абсолютно новый. Вот они слева направо: новый, целый, но дохлый и вздутый

Читайте также:  Поражение людей электрическим током происходит

Даже невздутый кондёр может оказаться неисправным. Проверяем конденсаторы на ESR-метре Конденсатор, Радиокомпоненты, Радиоэлектроника, Esr метр, Длиннопост

Проверять конденсаторы будем на ESR метре, вот таком:

Даже невздутый кондёр может оказаться неисправным. Проверяем конденсаторы на ESR-метре Конденсатор, Радиокомпоненты, Радиоэлектроника, Esr метр, Длиннопост

При замере показаний будем руководствоваться таблицей ESR, которую я нашел в яндекс картинках.

Даже невздутый кондёр может оказаться неисправным. Проверяем конденсаторы на ESR-метре Конденсатор, Радиокомпоненты, Радиоэлектроника, Esr метр, Длиннопост

Первый клиент: вздутый конденсатор 25в 1000мкф. Согласно таблице, его ESR должен быть равен 0.08 Ом. На практике допустимы и немного большие значения. Вздутый электролитический конденсатор показал нам ESR 1.4 Ом, 347 мкф (вместо заявленных 1000 мкф) и 9% потерь. Однозначно трупик.

Даже невздутый кондёр может оказаться неисправным. Проверяем конденсаторы на ESR-метре Конденсатор, Радиокомпоненты, Радиоэлектроника, Esr метр, Длиннопост

Теперь давайте проверим конденсатор из прошлого поста. Напомню, с виду он целый, но монитор выключался после нескольких часов работы и более не включался. Этот кондёр на 25в 470 мкф и согласно таблице его ESR должен быть в районе 0.12 Ом. На практике его ESR оказался аж 1 Ом, процент потерь = 3.7, да и емкость меньше заявленной. Всего 409.2 мкф.

Даже невздутый кондёр может оказаться неисправным. Проверяем конденсаторы на ESR-метре Конденсатор, Радиокомпоненты, Радиоэлектроника, Esr метр, Длиннопост

Теперь давайте проверим новый конденсатор на 25в 1000мкф. Напомню, что его ESR должен быть в пределах 0.08 Ом. Тестер показал нам 0.19 Ом, 0.9% потерь напряжения. Ёмкость даже немного выше заявленной, целых 1020 мкф.

Даже невздутый кондёр может оказаться неисправным. Проверяем конденсаторы на ESR-метре Конденсатор, Радиокомпоненты, Радиоэлектроника, Esr метр, Длиннопост

Вот так можно проверить конденсаторы, имея под рукой ESR метр. Кстати, про прозвонке данных кондёров мультиметром никаких аномалий не выявлено, но бывает, что мертвые конденсаторы звонятся накоротко. Если вдруг решите проверить конденсатор обычным мультиметром или ESR метром, обязательно убедитесь, что он разряжен, иначе прибор умрет.

Источник

Измеритель тока утечки конденсаторов

Текущее время: Сб апр 24, 2021 20:53:48

Часовой пояс: UTC + 3 часа

измеритель тока утечки конденсаторов

Страница 2 из 2 [ Сообщений: 40 ] На страницу Пред. 1 , 2

JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Компания «Компэл» и Analog Devices приглашают всех желающих 27/04/2021 принять участие в вебинаре, посвященном решениям Analog Devices для гальванической изоляции. В программе вебинара: технологии гальванической изоляции iCoupler, цифровые изоляторы, технология isoPower, гальванически изолированные интерфейсы (RS-485, CAN, USB, I2C, LVDS) и другое. Вебинар будет интересен разработчикам промышленной автоматики и медицинской техники.

Широкий ассортимент винтовых клеммников Degson включает в себя различные вариации с шагом выводов от 2,54 до 15 мм, с числом ярусов от одного до трёх и углами подключения проводника 45°, 90°, 180°. К тому же Degson предлагает довольно большой выбор клеммных винтовых колодок кастомизированных цветов.

Последний раз редактировалось vova2010 Чт июн 16, 2011 21:11:22, всего редактировалось 1 раз.

Источник



Измеритель емкости электролитических конденсаторов с тестом на утечку

Одной из самых частых причин выхода радиоэлектронной аппаратуры из строя или ухудшения ее параметров является изменение свойств электролитических конденсаторов. Иногда при ремонте аппаратуры (особенно произведенной в бывшем СССР), изготовленной с применением некоторых типов электролитических конденсаторов (например, K50-. ), для восстановления работоспособности устройства прибегают к полной или частичной замене старых электролитических конденсаторов. Все это приходится делать из-за того, что свойства материалов, входящих в электролитический (именно электролитический, т.к. в составе используется электролит) конденсатор, под электрическим, атмосферным, тепловым воздействиями со временем изменяются. И таким образом важнейшие характеристики конденсаторов, такие как емкость и ток утечки — так же изменяются (конденсатор «высыхает» и емкость его увеличивается, часто даже более чем на 50% от первоначальной, а ток утечки возрастает, т.е. внутреннее сопротивление, шунтирующее конденсатор уменьшается), что естественно приводит к изменению характеристик, а в худшем случае и к полному отказу аппаратуры.

Вашему вниманию предлагается схема и пример конструкции измерителя емкости электролитических конденсаторов с тестом их на утечку. Сразу оговорюсь — оригинальная идея схемы не моя, а разработана [1], мною была исправлена одна ошибка, добавлена встроенная калибровка и тест на утечку конденсатора, разработан вариант конструкции и произведено изготовление с настройкой, испытаниями. Прекрасные результаты работы прибора заставили меня поделиться информацией с Вами.

Измеритель обладает следующими качественными и количественными характеристиками :

1) измерение емкости на 8 поддиапазонах :

  • 0 . 3 мкф;
  • 0 . 10 мкф;
  • 0 . 30 мкф;
  • 0 . 100 мкф;
  • 0 . 300 мкф;
  • 0 . 1000 мкф;
  • 0 . 3000 мкф;
  • 0 . 10000 мкф.

2) оценка тока утечки конденсатора по светодиодному индикатору;
3) возможность точного измерения при изменении напряжения питания и температуры окружающей среды (встроенная калибровка измерителя);
4) напряжение питания 5-15 В ;
5) определение полярности электролитических (полярных) конденсаторов;
6) ток потребления в статическом режиме . не более 6 мА;
7) время измерения емкости . не более 1 с;
8) ток потребления во время измерения емкости с каждым поддиапазоном возрастает,
но . не более 150 мА на последнем поддиапазоне.

Суть прибора — измерение напряжения на выходе дифференцирующей цепи, рис.1.

Напряжение на резисторе: Ur = i*R ,
где i — общий ток через цепь, R — зарядное сопротивление ;

Т.к. цепь дифференцирующая, то ее ток : i = С*(dUc/dt) ,
где С — заряжаемая емкость цепи, но конденсатор будет линейно заряжаться через источник тока, т.е. стабилизированным током : i = С*const,
значит напряжение на сопротивлении (выходное для этой цепи): Ur = i*R = C*R*const — прямо пропорционально емкости заряжаемого конденсатора, а значит измеряя вольтметром напряжение на резисторе мы измеряем в некотором масштабе и исследуемую емкость конденсатора.

Схема представлена на рис. 2.
В исходном положении испытуемый конденсатор Сх (или калибровочный С1 при включенном тумблере SA2) разряжен через R1. Измерительный конденсатор, на котором (не на испытуемом непосредственно) измеряется напряжение, пропорциональное емкости испытуемого Сх, разряжен через контакты SA1.2. При нажатии кнопки SA1 испытуемый Сх (С1) заряжается через соответствующие поддиапазону (галетный переключатель SA3) резисторы R2 . R11. При этом зарядный ток Сх (С1) проходит через светодиод VD1, чья яркость свечения позволяет судить о токе утечки (сопротивлении, шунтирующем конденсатор) в конце заряда конденсатора. Одновременно с Сх (С1) через источник стабилизированного тока VT1,VT2,R14,R15 заряжается и измерительный (заведомо исправный и с малым током утечки) конденсатор С2. VD2, VD3 используются для предотвращения разряда измерительного конденсатора через источник напряжения питания и стабилизатор тока соответственно. После заряда Сх (С1) до уровня, определяемого R12, R13 (в данном случае до уровня примерно половины напряжения источника питания), компаратор DA1 отключает источник тока, синхронный с Сх (С1) заряд С2 прекращается и напряжение с него, пропорциональное емкости испытуемого Сх (С1) индицируется микроамперметром PA1 (две шкалы со значениями кратными 3 и 10, хотя можно настроить на любую шкалу) через повторитель напряжения DA2 с высоким входным сопротивлением, что также обеспечивает долгое сохранение заряда на С2.

Настройка

При настройке положение калибровочного переменного резистора R17 фиксируется в каким-либо положении (например, в среднем). Подключая эталонные конденсаторы с точно известными значениями емкости в соответствующем диапазоне, резисторами R2, R4, R6-R11 производится калибровка измерителя — подбирается такой ток заряда, чтобы эталонные значения емкостей соответствовали определенным значениям на выбранной шкале.

В моей схеме точные значения зарядных сопротивлений при напряжении питания 9 В составили:

После калибровки один из эталонных конденсаторов становится калибровочным С1. Теперь при изменении напряжения питания (изменения температуры окружающей среды, например при сильном охлаждении готового отлаженного прибора на морозе показания емкости у меня получались заниженными процентов на 5) или просто для контроля точности измерений достаточно подключить С1 тумблером SA2 и, нажав SA1, калибровочным резистором R17 произвести подстройку PA1 на выбранное значение емкости С1.

Конструкция

Перед началом изготовления прибора необходимо выбрать микроамперметр с подходящей шкалой(-ами), габаритами и током максимального отклонения стрелки, но ток может быть любым (порядка десятков, сотен микроампер) благодаря возможности настройки и калибровки прибора. Я применил микроамперметр ЭА0630 с Iном = 150 мкА, классом точности 1.5 и двумя шкалами 0 . 10 и 0 . 30.

Плата была разработана с учетом того, что она будет крепиться непосредственно на микроамперметре при помощи гаек на его выводах, рис.3. Такое решение обеспечивает и механическую, и электрическую целостность конструкции. Прибор размещается в подходящий по габаритам корпус, достаточный для размещения также (кроме микроамперметра и платы):

— SA1 — кнопка КМ2-1 из двух малогабаритных переключателей;
— SA2 — малогабаритный тумблер МТ-1;
— SA3 — малогабаритный галетный переключатель на 12 положений ПГ2-5-12П1НВ;
— R17 — СП3-9а — VD1 — любой, я применил какой-то из серии КИПх-хх, красного цвета свечения;
— 9-ти вольтовая батарея «Корунд» с габаритами 26.5 х 17.5 х 48.5 мм (без учета длины контактов).

SA1, SA2, SA3, R17, VD1 закрепляются на верхней крышке (панели) прибора и располагаются над платой (батарея укрепляется при помощи проволочного каркаса прямо на плате), но соединяются с платой проводами, а все остальные радиоэлементы схемы располагаются на плате (и под микроамперметром непосредственно тоже) и соединяются печатным монтажом. Отдельного выключателя питания я не предусматривал (да и в выбранный корпус он бы уже не поместился), совместив его с проводами для подключения испытуемого конденсатора Сх в разъеме типа СГ5. «Мама» XS1 разъема имеет пластмассовый корпус для установки на печатную плату (она устанавливается в углу платы), а «папа» XP1 подключается через отверстие в торце корпуса прибора. При подключение разъема «папа» своими контактами 2-3 включает питание прибора. К проводам Сх параллельно неплохо приладить разъем (колодку) какой-либо конструкции для подключения отдельных отпаянных конденсаторов.

Работа с прибором

При работе с прибором нужно быть внимательным с полярностью подключения электролитических (полярных) конденсаторов. При любой полярности подключения индикатор показывает одно и то же значение емкости конденсатора, но при неправильной полярности подключения, т.е. «+» конденсатора к «-» прибора, светодиод VD1 индицирует большой ток утечки (после заряда конденсатора светодиод продолжает ярко гореть), тогда как при правильной полярности подключения светодиод вспыхивает и постепенно гаснет, демонстрируя уменьшение зарядного тока до очень малой величины, практически до полного потухания (следует наблюдать 5-7 секунд), при условии, что испытуемый конденсатор обладает малым током утечки. Неполярные неэлектролитические конденсаторы имеют очень малый ток утечки, что и видно по очень быстрому и полному гашению светодиода. А если же ток утечки велик (сопротивление, шунтирующее конденсатор мало), т.е. конденсатор старый и «течет», то свечение светодиода видно уже при Rутечки = 100 кОм, а при меньших шунтирующих сопротивлениях светодиод горит еще ярче.
Таким образом можно по свечению светодиода определять полярность электролитических конденсаторов: при том подключении, когда ток утечки меньше (светодиод менее ярок) — полярность конденсатора соответствует полярности прибора.

Для большей точности показаний любое измерение следует повторять не менее 2-х раз, т.к. в первый раз часть тока заряда идет на создание оксидного слоя конденсатора, т.е. показания емкости чуть-чуть занижены.

Источник

Электрика и электричество © 2021
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.