Меню

Измерение тока шунты расширение пределов измерения амперметров

Измерение тока шунты расширение пределов измерения амперметров

В электронике и электротехнике часто можно услышать слово “шунт”, “шунтирование”, “прошунтировать”. Слово “шунт” к нам пришло с буржуйского языка: shunt – в дословном переводе “ответвление”, “перевод на запасной путь”. Следовательно, шунт в электронике – это что-то такое, что “примыкает” к электрической цепи и “переводит” электрический ток по другому направлению. Ну вот, уже легче).

По сути дела шунт представляет из себя простой резист ор который имеет маленькое сопротивление, проще говоря, низкоомный резистор. И как бы это ни странно звучало: шунт является простейшим преобразователем силы тока в напряжение. Но как это возможно? Да оказывается все просто!

Как работает шунт

Итак, имеем простой шунт. Кстати, на схемах он обозначается как резистор. И это неудивительно, потому что это и есть низкоомный резистор.

Условимся считать, что ток у нас постоянный и течет из пункта А в пункт Б. На своем пути он встречает шунт и почти беспрепятственно течет через него, так как сопротивление шунта очень маленькое. Не забываем, что электрический ток характеризуется такими параметрами, как Сила тока и Напряжение. Через шунт электрический ток протекает с какой-то силой ( I ), в зависимости от нагрузки цепи.

Помните Закон Ома для участка электрической цепи? Вот, собственно и он:

Сопротивление шунта у нас всегда постоянно и не меняется, попросту говоря “константа”. Падение напряжение на шунте мы можем узнать, замерив вольтметром как на рисунке:

Значит, исходя из формулы

и делаем простой до ужаса вывод: показания на вольтметре будут тем больше, чем бОльшая сила тока будет протекать через шунт.

Так что же это значит? А это значит, что мы спокойно можем рассчитать силу тока, протекающую по проводу АБ ;-). Все гениальное – просто! И самое замечательное знаете что? Нам даже не надо использовать амперметр ;-).

Вот такой принцип действия шунта. И чаще всего этот принцип используется как раз для того, чтобы расширить пределы измерения измерительных приборов.

Виды шунтов

Промышленные амперметры выглядят вот так:

промышленный амперметр амперметр

На самом же деле, как бы это странно ни звучало – это вольтметры. Просто их шкала нарисована (проградуирована) уже с расчетом по закону Ома. Короче говоря, показывает напряжение, а счет идет в Амперах ;-).

На одном из них можно увидеть предел измерения даже до 100 Ампер. Как вы думаете, если поставить такой прибор в разрыв электрической цепи и пропустить силу тока, ну скажем, Ампер в 90, выдержит ли тоненький провод измерительной катушки внутри амперметра? Думаю, пойдет белый густой дым). Поэтому такие измерения проводят только через шунты.

А вот, собственно, и промышленные шунты:

промышленный шунт

Те, которые справа внизу могут пропускать через себя силу тока до килоАмпера и больше.

К каждому промышленному амперметру в комплекте идет свой шунт. Для начала использования амперметра достаточно собрать шунт с амперметром вот по такой схеме:

В некоторых амперметрах этот шунт встраивается прямо в корпус самого прибора.

Работа шунта на практическом примере

В гостях у нас самый что ни на есть обыкновенный промышленный шунт для амперметра:

шунт 75шсм3

Сзади можно прочитать его маркировку:

шунт маркировка

Как же прочитать характеристику такой маркировки? Здесь все просто! Это означает, что если протекающая сила тока через шунт будет 20 Ампер, то падение напряжения на шунте будет 75 милливольт.

0,5 – это класс точности. То есть сколько мы замерили – это значение будет с погрешностью 0.5% от измеряемой величины. То есть допустим, мы замеряли падение напряжения 50 милливольт. Погрешность измерения составит 50 плюс-минус 0,25. Такой точности вполне хватит для промышленных и радиоэлектронных нужд ;-).

Итак, у нас имеется простая автомобильная лампочка накаливания на 12 Вольт:

Шунт

Выставляем на Блоке питания напряжение в 12 Вольт, и цепляем нашу лампочку. Лампочка зажигается и мы сразу же видим, какую силу тока она потребляет, благодаря встроенному амперметру в блоке питания. Кушает наша лампа 1,7 Ампер.

Шунт

Предположим, у нас нету встроенного амперметра в блоке питания, но нам надо знать, какая все-таки сила тока проходит через лампочку. Для этого собираем простенькую схемку:

Шунт

И замеряем падение напряжения на самом шунте. Получилось 6,3 милливольта.

падение напряжения на шунте

Так как мы знаем, что при 20 Амперах напряжение на шунте будет 75 милливольт, то какая сила тока будет проходить через шунт, если падение напряжения на нем составит 6,3 милливольта? Вспоминаем училку по математике Марьиванну и решаем простенькую пропорцию за 5-ый класс 😉

Читайте также:  Когда применяется постоянный ток а когда переменный при сварке

Вспоминаем, что показывал наш блок питания?

Шунт

Погрешность в 0,02 Ампера! Думаю, это можно списать на погрешность приборов).

Так как радиолюбители в основном используют малое напряжение и силу тока в своих электронных безделушках, то можно применить этот принцип и в своих разработках. Для этого достаточно будет взять низкоомный резистор и использовать его как датчик силы тока). Как говорится ” голь на выдумку хитра” 😉

Что такое шунт в электронике и видео про это:

Где купить шунт

шунт Алиэкспресс

Почти такой же шунт, как у меня в статье, можно заказать на Али по этой ссылке:

Источник

Расширение пределов измерения амперметров и вольтметров

Для получения высокой точности и чувствительности магнитоэлектрических приборов их подвижные обмотки выполняют по возможности легкими из очень тонкой изолированной проволоки.

Такие обмотки допускают очень незначительные по величине токи, не превышающие 30 мА, при этом сопротивление самих обмоток получается равным примерно 5 Ом.

Таким образом, магнитоэлектрическим прибором можно измерять ток не более 30 мА, а напряжение – не выше 150 мВ, так как

U = I × R = 30 × 5 = 150 мВ

Для расширения пределов измерения амперметра применяют шунты, шунты имеют очень малое сопротивление (десятые, сотые доли ома) и включаются параллельно обмотке амперметра. Величина шунта RШ определяется по формуле:

где RШ – сопротивление шунта;

RA – сопротивление амперметра;

n – коэффициент расширения пределов измерения тока амперметром.

где I – измеряемый ток;

IA – максимально допустимый ток амперметра.

Для расширения пределов измерения вольтметров применяют добавочные сопротивления, которые имеют большое сопротивление (десятки килоом), и которые включают последовательно с обмоткой вольтметра. Величина добавочного сопротивления RД определяется по формуле:

где RД – добавочное сопротивление;

RV – сопротивление вольтметра;

n – коэффициент расширения пределов измерения напряжения вольтметром.

где U – измеряемое напряжение;

UV – максимально допустимое напряжение вольтметра.

Источник

Измерение тока шунты расширение пределов измерения амперметров

§ 73. Измерение силы тока. Расширение пределов измерения амперметра

Для измерения силы тока в электрических цепях служат амперметры, миллиамперметры и микроамперметры различных систем. Их включают в цепь последовательно, и через прибор проходит весь ток, протекающий в цепи.
При различных электрических измерениях весьма важно, чтобы измерительный прибор как можно меньше изменял электрический режим цепи, в которую его включают. По этой причине амперметр должен обладать незначительным сопротивлением по сравнению с сопротивлением цепи. Пусть в электрическую цепь включен источник электрической энергии, напряжение которого U = 10 в. Сопротивление потребителя rп = 20 ом. В этой цепи, согласно закону Ома, ток

Допустим, что обмотка миллиамперметра, которым следует измерить ток, имеет сопротивление ra = 30 ом. Тогда при включении прибора в цепь в ней установится ток

Таким образом, если включить в цепь прибор с большим сопротивлением, то нарушится ее электрический режим и сила тока будет измерена с ошибкой на 0,3 а.
Этот пример подтверждает, что желательно измерять силу тока в цепи таким прибором, у которого собственное сопротивление наименьшее. Присоединять амперметр к полюсам источника тока без нагрузки нельзя. Это объясняется тем, что по обмотке амперметра, имеющей малое сопротивление, в данном случае пройдет большой ток и она может перегореть. По той же причине нельзя включать амперметр параллельно нагрузке. По обмотке и отдельным элементам электроизмерительных приборов некоторых систем во избежание возможности их порчи нельзя пропустить сколько-нибудь значительный ток. В частности, это относится к спиральным пружинам и подвижной катушке магнитоэлектрического прибора.
Если такой измерительный прибор нужно приспособить для измерения значительной силы тока — расширить пределы измерения амперметра, то он снабжается шунтом.
Шунт — это относительно малое, но точно известное сопротивление (rш), присоединяемое параллельно измерительному механизму. Схема включения амперметра с шунтом показана на рис. 87. При таком включении шунта из n частей тока, протекающего в цепи, через прибор проходит лишь одна его часть, а через шунт — остальные n — 1 частей. Это происходит потому, что сопротивление шунта меньше сопротивления амперметра в n — 1 раз. Число n показывает, во сколько раз нужно увеличить предел измерения амперметра. Таким образом, шунт служит для расширения пределов измерения прибора.
Пусть амперметр позволяет измерять силу тока Ia = 5 а, а в данном случае необходимо этим прибором измерить силу тока I = 30 а. Значит, нужно увеличить предел измерения прибора в Сопротивление шунта, который надо присоединить параллельно амперметру, чтобы обеспечить такое расширение предела измерения, можно определить по формуле

Читайте также:  Векторное управление двигателем постоянного тока

Если сопротивление амперметра ra = 0,15 ом, то сопротивление шунта

После присоединения шунта к прибору каждое деление шкалы прибора будет соответствовать величине, в n раз большей, чем указана на ней. В нашем случае, если стрелка прибора с шунтом установится на делении 5, это значит, что в цепи протекает ток I = 5 · n = 5 · 6 = 30 а.
Шунт должен иметь четыре зажима, это необходимо для устранения влияния на сопротивление шунта переходных сопротивлений контактов. Шунты изготовляют из манганина — сплава, у которого температурный коэффициент сопротивления практически равен нулю.

Источник



Раздел 5. Средства расширения пределов измерения. Шунты и добавочные сопротивления

Расширение пределов измерения приборов – это важная технико-экономическая задача, целью которой является уменьшение объема приборного парка предприятия без ущерба для метрологического обеспечения испытаний изделий и управления технологическими процессами. При наличии средств расширения пределов измерения оказывается возможным применять один и тот же обычно дорогостоящий прибор для измерения величин различного размера. В конкретных ситуациях может потребоваться изменить предел измерения в сторону увеличения верхнего предела измерений, т. е. уменьшить чувствительность прибора, а в других случаях наоборот – повысить чувствительность, т. е. изменить предел измерения в сторону уменьшения верхнего предела измерения. Возможны два варианта решения этой задачи.

В первом варианте средства расширения пределов измерения встраиваются в измерительный прибор, который снабжается ручным переключателем пределов. Такой прибор является многопредельным, и метрологические характеристики этого прибора на разных пределах могут различаться. Тогда они нормируются для каждого предела измерения по отдельности. Об этом потребителю сообщается надписями на шкале или в сопроводительной документации.

Во втором варианте используются внешние средства расширения пределов измерений. Этот вариант используется там, где измерения на одном выбранном пределе выполняются в течение длительного времени, например в системах управления технологическим процессом.

Такое внешнее средство расширения пределов измерения есть не что иное, как масштабирующий линейный измерительный преобразователь, который изменяет не вид измеряемой величины, а лишь ее масштаб. Эти преобразователи выпускаются промышленностью как автономные средства измерений. Каждая группа таких преобразователей имеет унифицированные свойства, присоединительные размеры и метрологические характеристики. Поэтому при их соединении с однопредельным измерительным прибором фактически получается новый прибор, метрологические характеристики которого должны быть рассчитаны по метрологическим характеристикам соединенных компонентов.

В качестве внешних средств расширения пределов измерения используются:

— шунты – для расширения пределов измерения силы тока в сторону увеличения максимального значения;

— делители напряжения и добавочные сопротивления – для расширения пределов измерения напряжения в сторону увеличения максимального значения;

— усилители тока и напряжения – для расширения пределов измерения тока или напряжения в сторону уменьшения максимального значения измеряемой величины;

— измерительные трансформаторы тока и напряжения – могут применяться для расширения пределов измерения тока или напряжения в обе стороны, но чаще всего применяются для расширения пределов измерения в сторону увеличения максимального значения измеряемой величины.

5.1. Шунты

Схема соединения однопредельного амперметра с шунтом показана на рис. 5.1.

Шунт имеет четыре зажима. Пара зажимов Л1, Л2 называются токовыми зажимами, к ним подключается линия с измеряемым током. Два других зажима П1, П2потенциальные, к ним подключается амперметр, собственное сопротивление которого показано на рис. 5.1 и обозначено через .

Потенциальные зажимы жестко соединены между определенными точками шунта путем сварки или другими методами, обеспечивающими высокую стабильность расположения этих точек и пренебрежимо малое и стабильное переходное сопротивление от этих точек к потенциальным зажимам. Непосредственное присоединение амперметра к токовым зажимам недопустимо, поскольку в этом случае нестабильность сопротивления контактов в токовых зажимах из-за различных усилий при винтовом соединении, попадания грязи и пыли при большой силе тока будет вызывать соответствующую нестабильность падения напряжения на этих контактах и погрешность измерения, которая не может быть гарантирована изготовителями амперметра и шунта и не может быть определена при измерении.

Сопротивление шунта между точками присоединения потенциальных зажимов обозначено через (рис. 5.1, а).

Пусть – ток полного отклонения стрелки, соответствующий верхнему пределу диапазона измерения амперметра А; – падение напряжения на сопротивлении амперметра при этом токе ( ); – верхний предел диапазона измерения силы тока, который желательно обеспечить с помощью шунта.

Очевидно, что при этой силе тока должно выполняться равенство . Если шунт рассматривать как делитель тока с коэффициентом деления , то его сопротивление

В двухпредельном амперметре (рис. 5.1, б), если принять , сопротивления шунта для пределов и соответственно равны:

Читайте также:  Как ток идет по магниту

где – коэффициенты шунтирования.

Совместно решая (5.1), можно определить сопротивления шунтов:

Аналогично можно рассчитать сопротивления для многопредельного ступенчатого шунта.

5.2. Добавочные сопротивления

Для расширения пределов измерения напряжения могут использоваться делители напряжения и добавочные сопротивления. Однако из-за того, что делитель напряжения должен потреблять от объекта ток, превышающий ток собственного потребления вольтметра, на практике для расширения пределов измерения вольтметров применяют добавочные сопротивления (рис. 5.2).

Добавочное сопротивление соединяется последовательно с вольтметром. Для изменения предела измерения напряжения с до величина при заданном значении тока полного отклонения стрелки вольтметра определяется из выражений

где – коэффициент расширения предела измерения вольтметра (множитель шкалы).

Для обеспечения совместимости добавочного сопротивления и вольтметра, к которому оно подключается, в документации на вольтметр и, как правило, на его шкале указывается ток полного отклонения стрелки. Подходящее добавочное сопротивление подбирается по следующим признакам:

— по коэффициенту расширения предела измерения;

— по максимально допустимому току через , который не должен быть больше, чем , чтобы добавочное сопротивление не перегревалось этим током;

— по характеристикам инструментальной погрешности созданного таким образом нового вольтметра, которая будет складываться из собственной погрешности вольтметра и погрешности добавочного сопротивления, в т. ч. возникающей в результате перегрева протекающим по нему током.

В многопредельных вольтметрах (рис. 5.2, б) используют ступенчатое включение резисторов и для соответствующих пределов измерения напряжений при заданном токе полного отклонения рамки сопротивления добавочных резисторов рассчитывают по формулам

где – коэффициенты расширения пределов.

Добавочные резисторы могут быть внутренними (до 600 В) и наружными (до 1500 В). Наружные добавочные резисторы, в свою очередь, могут быть индивидуальными и взаимозаменяемыми на номинальные токи 0,5; 1; 3; 7,5; 15 и 30 мА.

5.3. Типовые примеры по расчету шунтов и добавочных резисторов

Пример 5.1.Определить пределы измерения токов I1 и I2 в схеме двухпредельного миллиамперметра (рис. 5.1, б) с током полного отклонения рамки измерительного механизма IA = 50 мкА, внутренним сопротивлением RA = 1,0 кОм. Значения сопротивлений резисторов ступенчатого шунта R1 = 0,9 Ом; R2 = 0,1 Ом.

Решение. Ток IA, протекающий через миллиамперметр, связан с измеряемым током I зависимостью

Отсюда .

На пределе измерения тока I1 Rш1 = R1 + R2, а на пределе измерения тока I2 резистор R1 включен последовательно с RA, а шунтом служит R2. Отсюда

Пример 5.2.Для расширения предела измерения амперметра в 50 раз с внутренним сопротивлением RA = 0,5 Ом необходимо подключить шунт. Определить сопротивление шунта, ток полного отклонения прибора и максимальное значение тока на расширенном пределе, если падение напряжения на шунте Uн= 75 мВ.

Решение.Сопротивление шунта Ом.

Ток полного отклонения прибора

Максимальное значение тока на расширенном пределе

Пример 5.3.Амперметр с пределом измерения 100 А имеет наружный шунт сопротивлением Rш = 0,001 Ом. Определить сопротивление измерительной катушки прибора, если ток полного отклонения IA = 25 мA. Определить наибольшую потребляемую амперметром мощность.

Решение.Сопротивление измерительной катушки прибора

RA = Rш(n – 1) = 0,001 Ом (I / IA – 1) = 0,001[(100 A / 25 10 – 3 ) – 1] = 4 Ом.

Потребляемая амперметром мощность

где R – эквивалентное сопротивление параллельно соединенных RA и Rш, рассчитываемое по формуле

Тогда потребляемая мощность РА=

Пример 5.4.Определить значения сопротивлений добавочных резисторов R1, …, R4 в цепи многопредельного магнитоэлектрического вольтметра (см. рис. 5.2, б), который предназначен для измерения напряжения в четырех диапазонах с верхними пределами U1 = 30 B, U2 = 50 B, U3 = 100 B и U4 = 200 B, если ток полного отклонения рамки измерительного механизма вольтметра равен 10 мА, а сопротивление рамки 400 Ом.

Решение. Величина добавочного резистора рассчитывается по формуле

Rд = RV(n – 1), где n = U / (IV RV).

Для первого диапазона измерения (30 В) Rд1 = R1; для второго диапазона измерения (50 В) Rд2 = R1 + R2; для третьего диапазона измерения (100 В) Rд3 = R1 + R2 + R3; для четвертого диапазона измерения (200 В) Rд4 = R1 + R2 + R3 + R4;

n1 = 30 B/( n2 = 50 B/4 B = 12.5; n3 = 100 B/4 B = 25; n4 = 200 B/4 B = 50.

Отсюда R1 = Rд1 = RV(n1 – 1) = 400(7,5 – 1) = 400 Ом; R2=Rд2Rд1 = 400(12,5 – 1) – 2600 = 4600 – 2600 = 2000 Ом; R3 = Rд3Rд2 = 400(25 – 1) – 4600 = 9600 – 4600 = 5000 Ом; R4 = Rд4Rд3 = 400(50 – 1) – 9600 = 19600 – 9600 = 10000 Ом.

Пример 5.5.Предел измерения вольтметра составляет 7,5 В при внутреннем сопротивлении RV = 200 Ом. Определить добавочное сопротивление, которое необходимо включить для расширения предела измерения до 600 В.

Rд = RV(n – 1); n = 600 B / 7,5 B= 80.

Rд = 200(80 – 1) = 15,8 кОм.

Источник