Меню

Источники переменного тока трехфазной сети

Особенности трехфазного тока

Время на чтение:

Несмотря на столь широкое применение, немногие знают, что собой представляет трехфазный ток. И это простительно, поскольку не все получали высшее профильное образование по профессии электрика. Поэтому цель этой статьи — рассказать в общих чертах о переменном трехфазном электрическом токе. Людям, не связанным с техническим науками, а также начинающим специалистам, будет интересно узнать, что это такое, где применяется, в том числе о его положительных и отрицательных сторонах.

Что такое трехфазный ток

Электрической цепью с трехфазной системой называют схему подключения, к которой подводят три жилы кабеля. В каждой действуют переменные электродвижущие силы одинаковых частот, но сдвинутых по фазе на одну треть периода относительно друг друга. На языке физике сдвиг выглядит как alpha = 2*pi/3. Каждую отдельную цепь всей схемы в целом называют фазой. А поскольку их три, то и вся схема получила соответствующее название.

Принцип действия трехфазного генератора

Практически все генераторы электрических станций вырабатывают трехфазный ток. Они совмещают в себе конструкцию одновременной инициации возбуждения сдвинутых относительно друг друга электродвижущих сил. В его устройство входят три независимых якоря, расположенных на статоре установки и удаленных друг от друга на одну треть окружности. В центре размещается элемент индукции, представленный как постоянный магнит.

На рисунке видно отличие трехфазного тока от однофазного. На схеме показаны три катушки, которые сами по себе являются независимыми генераторами напряжения. Если включить каждую из них в отдельную сеть со своей нагрузкой, то они способны питать электричеством любые приборы.

Однако продолжая логику схематического подключения проводки, для общего электроснабжения оборудования-приемника потребуется шесть кабелей. С точки зрения рациональности, такая цепь будет громоздкой и не экономной. Поэтому катушки соединяют таким образом, чтобы обойтись всего тремя или четырьмя кабелями. Такую систему называют трех- и четырехжильной, одна из которых нулевая, то есть не находится под токовым напряжением.

Подключение звездой

Зачем нужен трехфазный ток

Однофазный и трехфазный переменный ток широко применяются в промышленной и бытовой сфере. Однако в последнее время все больше потребителей предпочитают отказываться от первого и склоняются к последнему.

И дело даже не в увеличении мощности и включении большего количества электрического оборудования. Порой разница между силовой нагрузкой даже не заметна, а при определенных параметрах сети входная мощность для обоих цепей может быть одинаковой.

Основным потребителем является трехфазное оборудование. В эту группу входит:

  • асинхронные электроприводы;
  • нагревательные установки;
  • промышленное оборудование.

Наиболее частым потребителем трехфазного тока является асинхронный двигатель. Именно в составе этой сети они показывают наилучшие рабочие параметры, высокое КПД при относительно низких энергозатратах.

Асинхронный двигатель

К тому же, приводы, обогреватели, котлы, электрические печи, обогреватели не перекашивают фазы. Для чувствительного оборудования такое проседание — тема очень щекотливая.

Обратите внимание! В реальности обеспечить одинаковую нагрузку на всех трех фазах невозможно. Соответственно, напряжение всегда будет неодинаковым.

Поскольку в помещении присутствует еще несколько потребителей, необходима дополнительная система, которая сможет распределять нагрузку равномерно по всем приемникам. Для этого нужна трехкабельная цепь. Включение нагрузки в сеть трехфазного тока происходит к той цепи, на которую приходится меньше всего потребителей.

Схема подключения трехфазного тока

Однако распределительные системы для цепей трехфазного тока получаются очень громоздкими и занимают много места. Оно требует дополнительных систем безопасности, так как напряжение таких сетей составляет 380 В. При коротком замыкании ток будет в разы больше, чем при привычных нам 220 В.

Преимущества и недостатки

Как и все материальное, трехфазный ток имеет свои плюсы и минусы. К положительным моментам применения систем с тремя или четырьмя проводами относится:

  • экономичность. Для передачи электроэнергии на большие расстояния используют жилы из цветных металлов, имеющих небольшие удельные сопротивления. Вольтаж делят пропорционально количеству кабелей. За счет распределения нагрузок инженеры могут уменьшить количество проводов и их сечение, что при стоимости редких материалов дает заметную экономию;
  • эффективность. Параметры мощности трехфазных трансформаторов на порядок выше однофазных при меньших размерах магнитопровода;

Трансформатор 3-фазного тока

  • простота. При одновременном подключении потребителей к трехфазной системе генерируется дополнительное электромагнитное поле. Эффект сдвига фаз позволил создать простые и надежные бесколлекторные электродвигатели, ротор которых выполнен по принципу обычной болванки и устанавливается на шариковые подшипники. Асинхронные электроприводы с короткозамкнутым ротором широко применяются в качестве силовых агрегатов. Главным преимуществом таких моторов является возможность менять направления вращения оси путем переключения на разные фазные провода;
  • вариативность. В цепях с несколькими фазами существует возможность получать разные напряжения. Пользователь сможет менять мощность нагревателя или сервопривода, переключившись с одного кабеля на другой;
  • уменьшение стробоскопического эффекта. Он достигается за счет независимого подключения разных ламп к отдельным фазам.

Наравне с достоинствами трехфазный ток имеет свои недостатки. Они включают в себя:

  • сложность подключения. Для подведения трехфазной сети к частному или промышленному зданию необходимо получить специальное разрешение и технические условия от локальной компании по энергосбыту. Это мероприятие достаточно затратное и хлопотное. Даже при выполнении всех условий положительный результат не всегда гарантирован;
  • применения усиленных систем безопасности. В трехфазной сети подается напряжение 380 В, поэтому необходимы дополнительные устройства защиты от поражения электрическим током и короткого замыкания, которое может привести к пожару. В таких случая на входе ставят еще один трехполюсный автоматический выключатель с большими номинальными характеристиками. Он поможет избежать возгорания в случае замыкания цепи;
  • необходимость монтажа вспомогательных модулей для ограничения перенапряжения в распределительном щите. Он необходим на случай обрыва нулевого кабеля, что приведет к увеличению напряжения в одной из фаз.

Переход на трехфазный ток целесообразен для владельцев помещений, площадь которых больше 100 кв. метров. Это относится к частным домам и к производственным зданиям. Такая схема подключения позволит перераспределять равномерно нагрузку по всем потребителям и избежать скачков напряжения.

Чем отличается трехфазный ток от однофазного

Основное отличие однофазной цепи от трехфазной:

  • однофазный ток подается потребителям через один проводник, трехфазный — через три;
  • для завершения сети необходим нулевой кабель, поэтому в цепях с одной фазой их два, а в трех — четыре;
  • мощность повышается с увеличением количества фаз;
  • простота сетевой конструкции;
  • в однофазной цепи появляются перепады напряжения с увеличением количества потребителей электроэнергии;
  • при отключении одной жилы в трехфазном, ток продолжает течь в оставшихся двух проводах. В однофазном напряжение полностью пропадает.

Обратите внимание! Трехфазная система позволяет использовать разные номиналы напряжений при питании оборудования с разными параметрами мощности.

Почему обычно три фазы, а не четыре

Таким вопросом задаются практически все начинающие электрики. По сути, количество фаз не ограничено. Их может быть 1, 2, 3, 4 и даже 10. Однако широкое применение получили трехфазные системы. Это связано с тем, что такой цепи достаточно для решения большинства задач.

Такие системы в большей степени используют для силовых установок на производстве. Вращение ротора составляет 360 градусов, а сдвиг по фазам составляет 120 градусов. Его вполне достаточно, чтобы раскрутить якорь до нужных оборотов и получить с двигателя нужную мощность. Увеличение количества фаз лишь повысит стоимость самой установки, поскольку потребует установки дополнительных катушек и подведения лишних кабелей.

Важно! Добавление фаз к существующим трем не повышает КПД агрегата, не увеличивает его мощность. С точки зрения рациональности, это лишь добавляет стоимость установок при сохранении прежних параметров работы.

График трехфазного тока

Ниже представлен график трехфазного тока.

График трехфазного тока

На рисунке видно, что каждая ветка имеет одинаковую частоту, но в каждой цепи периода прохождения тока через проводник сдвинуты по фазе на одну треть.

Система подключения

Существует два вида подключения катушек в электрогенераторе:

  • звездой. Суть системы заключается в соединении всех концов катушек в одну точку, которая является нейтральной. Нулевой провод и остальные три провода подключаются к потребителю;
  • треугольником. При таком способе каждый вывод обмотки соединяется со следующим. В результате они образуют замкнутый на отдельных контактах треугольник, а линейные кабели соединяются с оборудованием.

Схема подключения «Звезда» и «Треугольник»

На рисунке показано схематическое подключение катушек в электрогенераторе.

Трехфазная система подачи тока потребителям приобрела широкую популярность благодаря эффективности и экономичности. Также она позволяет повышать коэффициент полезного действия силового оборудования, его мощность, упрощая при этом его конструкцию.

Источник

Трехфазный переменный ток

трехфазный переменный токВ настоящее время во всем мире получила наибольшее распространение трехфазная система переменного тока .

Трехфазной системой электрических цепей называют систему, состоящую из трех цепей, в которых действуют переменные, ЭДС одной и той же частоты, сдвинутые по фазе друг относительно друга на 1/3 периода ( φ =2 π /3). Каждую отдельную цепь такой системы коротко называют ее фазой, а систему трех сдвинутых по фазе переменных токов в таких цепях называют просто трехфазным током .

Читайте также:  Человека ударило током в ванной

Почти все генераторы, установленные на наших электростанциях, являются генераторами трехфазного тока . По существу, каждый такой генератор представляет собой соединение в одной электрической машине трех генераторов переменного тока, сконструированных таким образом, что индуцированные в них ЭДС сдвинуты друг относительно друга на одну треть периода, как это показано на рис. 1.

Графики зависимости от времени ЭДС, индуцированных в обмотках якоря генератора трехфазного тока

Рис. 1. Графики зависимости от времени ЭДС, индуцированных в обмотках якоря генератора трехфазного тока

Как осуществляется подобный генератор легко понять из схемы на рис. 2.

Три пары независимых проводов, присоединенных к трем якорям генератора трехфазного тока, питают осветительную сеть

Рис. 2. Три пары независимых проводов, присоединенных к трем якорям генератора трехфазного тока, питают осветительную сеть

Здесь имеются три самостоятельных якоря, расположенных на статоре электрической машины и смещенных на 1/3 окружности (120 о ). В центре электрической машины вращается общий для всех якорей индуктор, изображенный на схеме в виде постоянного магнита.

трехфазный переменный токВ каждой катушке индуцируется переменная ЭДС одной и той же частоты, но моменты прохождения этих ЭДС через нуль (или через максимум) в каждой из катушек окажутся сдвинутыми на 1/3 периода друг относительно друга, ибо индуктор проходит мимо каждой катушки на 1/3 периода позже, чем мимо предыдущей.

Каждая обмотка трехфазного генератора является самостоятельным генератором тока и источником электрической энергии. Присоединив провода к концам каждой из них, как это показано на рис. 2, мы получили бы три независимые цепи, каждая из которых могла бы питать те или иные электроприемники, например электрические лампы.

В этом случае для передачи всей энергии, которую поглощают электроприемники, требовалось бы шесть проводов. Можно однако, так соединить между собой обмотки генератора трехфазного тока, чтобы обойтись четырьмя и даже тремя проводами, т. е. значительно сэкономить проводку.

Первый из этих способов, называется соединением звездой (рис. 3).

Рис. 3. Четырехпроводная система проводки при соединении трехфазного генератора звездой. Нагрузки (группы электрических ламп I, II, III) питаются фазными напряжениями.

Будем называть зажимы обмоток 1, 2, 3 началами, а зажимы 1 ‘ , 2 ‘ , 3 ‘ — концами соответствующих фаз.

Соединение звезд заключается в том, что мы соединяем концы всех обмоток в одну точку генератора, которая называется нулевой точкой или нейтралью , и соединяем генератор с приемниками электроэнергии четырьмя проводами: тремя так называемыми линейными проводами , идущими от начала обмоток 1, 2, 3, и нулевым или нейтральным проводом , идущим от нулевой точки генератора. Такая система проводки называется четырехпроводной .

трехфазный переменный токНапряжения между нулевой точкой и началом каждой фазы называют фазными напряжениями , а напряжения между началами обмоток, т, е. точками 1 и 2, 2 и 3, 3 и 1, называют линейными . Фазные напряжения обычно обозначают U1 , U 2 , U 3 , или в общем виде U ф, а линейные напряжения — U12, U23 , U 31 , или в общем виде U л.

Между амплитудами или действующими значениями фазных и линейных напряжений при соединении обмоток генератора звездой существует соотношение U л = √ 3 U ф ≈ 1,73 U ф

Таким образом, например, если фазное напряжение генератора U ф = 220 В, то при соединении обмоток генератора звездой линейное напряжение U л — 380 В.

В случае равномерной нагрузки всех трех фаз генератора, т. е. при приблизительно одинаковых токах в каждой из них, ток в нулевом проводе равен нулю . Поэтому в этом случае можно нулевой провод упразднить и перейти к еще более экономной трехпроводной системе. Все нагрузки включаются при этом между соответствующими парами линейных проводов.

При несимметричной нагрузке ток в нулевом проводе не равен нулю, но, вообще говоря, он слабее, чем ток в линейных проводах. Поэтому нулевой провод может быть тоньше, чем линейные.

При эксплуатации трехфазного переменного тока стремятся сделать нагрузку различных фаз по возможности одинаковой. Поэтому, например, при устройстве осветительной сети большого дома при четырехпроводной системе вводят в каждую квартиру нулевой провод и один из линейных с таким расчетом, чтобы в среднем на каждую фазу приходилась примерно одинаковая нагрузка.

Другой способ соединения обмоток генератора, также допускающий трехпроводную проводку — это соединение треугольником, изображенное на рис. 4.

Схема соединения обмоток трехфазного генератора треугольником

Рис. 4. Схема соединения обмоток трехфазного генератора треугольником

Здесь конец каждой обмотки соединен с началом следующей, так что они образуют замкнутый треугольник, а линейные провода присоединены к вершинам этого треугольника — точкам 1, 2 и 3. При соединении треугольником линейное напряжение генератора равно его фазному напряжению : U л = U ф.

Таким образом, переключение обмоток генератора со звезды на треугольник приводит к снижению линейного напряжения в √ 3 ≈ 1,73 раза . Соединение треугольником также допустимо лишь при одинаковой или почти одинаковой нагрузке фаз. Иначе ток в замкнутом контуре обмоток будет слишком силен, что опасно для генератора.

При применении трехфазного тока отдельные приемники (нагрузки), питающиеся от отдельных пар проводов, также могут быть соединены либо звездой, т. е. так, что один конец их присоединен к общей точке, а оставшиеся три свободных конца присоединяются к линейным проводам сети, либо треугольником, т. е. так, что все нагрузки соединяются последовательно и образуют общий контур, к точкам 1, 2, 3 которого присоединяются линейные провода сети.

На рис. 5 показано соединение нагрузок звездой при трехпроводной системе проводки, а на рис. 6 — при четырехпроводной системе проводки (в этом случае общая точка всех нагрузок соединяется с нулевым проводом).

На рис. 7 показана схема соединения нагрузок треугольником при трехпроводной системе проводки.

Соединение нагрузок звездой при трехпроводной системе проводк

Рис. 5. Соединение нагрузок звездой при трехпроводной системе проводки

Соединение нагрузок звездой при четырехпроводной системе проводок

Рис. 6. Соединение нагрузок звездой при четырехпроводной системе проводок

Соединение нагрузок треугольником при трехпроводной системе проводки

Рис. 7. Соединение нагрузок треугольником при трехпроводной системе проводки

Практически важно иметь в виду следующее. При соединении нагрузок треугольником каждая нагрузка находится под линейным напряжением, а при соединении звездой — под напряжением, в √ 3 раз меньшим. Для случая четырехпроводной системы это ясно из рис. 6. Но то же имеет место в случае трехпроводной системы (рис. 5).

Между каждой парой линейных напряжений здесь включены последовательно две нагрузки, токи в которых сдвинуты по фазе на 2 π /3. Напряжение на каждой нагрузке равно соответствующему линейному напряжению, деленному на √ 3 .

Таким образом, при переключении нагрузок со звезды на треугольник напряжения на каждой нагрузке, а следовательно, и ток в ней повышаются в √ 3 ≈ 1,73 раза. Если, например, линейное напряжение трехпроводной сети равнялось 380 В, то при соединении звездой (рис. 5) напряжение на каждой из нагрузок будет равно 220 В, а при включении треугольником (рис. 7) будет равно 380 В.

При подготовке статьи использовалась информация из учебника физики под редакцией Г. С. Ландсберга.

Источник

Трехфазный ток

В домовых распределительных электрических сетях в основном используются одна фаза и нулевой проводник. Этого достаточно для работы бытовых электроприборов, освещения и отопления. Для организации производственного технологического процесса применяют трехфазный ток. Потребители, шинные сборки, распределительные щитки, узлы учёта и вся электрическая схема настроены на работу от сетей трёхфазного тока.

Трёхфазный ток

Трехфазная система переменного тока

Сети трёхфазной системы рассчитаны на питание от подстанций, подающих напряжение по четырём проводам: три фазы и ноль. Это один из частных случаев многофазных цепей, где функционируют ЭДС, имеющие синусоидальные формы и равную частоту. Они произведены одним и тем же источником, но имеют угол сдвига между фаз в 120 градусов (2π/3).

Ещё электротехник М.О. Доливо-Добровольский, проводя изучение работы асинхронных двигателей, представил четырёхпроводную систему в качестве рабочей для питания такого типа машин и агрегатов. Каждый провод, образующий отдельную цепь внутри этой системы, называют «фазой». Структуру трёх смещённых по фазе переменных токов именуют трёхфазным током.

Четырёхпроводная схема питания

Важно! В подобной структуре фазное напряжение равно 220 В – это то, что покажет прибор при измерении между фазным и нулевым проводниками. Величина линейного напряжения составит 380 В при проведении измерения между двумя фазными тоководами.

Что такое трехфазный ток

Это система, объединяющая три электроцепи с токами, которые разнятся по фазе на 1/3 периода. Причём их собственные ЭДС совпадают по частоте и амплитуде и имеют такой же фазовый сдвиг. У такой структуры фазное и линейное напряжения соответственно равны 220 В и 380 В. Частота периодических колебаний – 50 герц (Гц).

Если подключить к осциллографу токовые синусоидальные сигналы от трёхфазной сети, то можно будет увидеть, что они совершают прохождение своих точек максимума в регулярной фазовой последовательности.

Общая формула мощности переменного тока:

где:

  • P – мощность, (Вт);
  • I – ток, (А);
  • U – напряжение, (В);
  • cosϕ – коэффициент мощности.
Читайте также:  Что такое потребитель электрического тока определение

Значение cosϕ должно стремиться к единице. Средний коэффициент мощности лежит в интервале 0,7-0,8. Чем он выше, тем больше КПД установки.

В случае 3-х фазных сетей мощность будет зависеть от схемы соединения источника и нагрузки.

График трёхфазного тока

Почему используют трехфазный ток

Зная, что такое трехфазный ток, можно однозначно ответить на вопрос, почему он применяется.

Трехфазные системы переменного тока обладают целым рядом преимуществ, которые позволяют им выделяться среди многофазного построения электрических структур. К плюсам можно отнести следующие особенности:

  • экономичное транспортирование энергии на дальние расстояния без снижения параметров;
  • 3-фазные трансформаторы и кабели обладают меньшей материалоёмкостью, в отличие от однофазных моделей;
  • возможность обеспечить сбалансированность энергосистемы;
  • одновременное присутствие в установках двух напряжений для работы: фазное напряжение (220 В) и линейное (380 В).

К сведению. Подключение люминесцентных ламп к разным фазам и установка их в один светильник значительно уменьшат стробоскопический эффект и заметное глазу мерцание.

Неотъемлемой частью оборудования любого производственного предприятия являются асинхронные двигатели. Для их нормальной работы и развития паспортной мощности необходимо 3-х фазное питание. Оно обеспечивает возможность образования вращающегося МП (магнитного поля), которое приводит в движение ротор асинхронной машины. Такие двигатели экономичнее, проще в изготовлении и просты в эксплуатации, по сравнению с однофазными или любыми другими.

На электростанциях любого типа (ГЭС, АЭС, ТЭС), а также альтернативных обеспечено производство электроэнергии переменного типа при помощи генераторов.

Трёхфазная линия электропередач 10 кВ

Как осуществляется работа генератора

Устройство действует, превращая энергию вращения в энергию электричества. Электромашина, используя вращение МП, генерирует электрический ток. В тот момент, когда проволочная обмотка (катушка) крутится в МП, силовые линии магнитного поля пронизывают витки обмотки.

Внимание! В результате этого процесса электроны совершают перемещение в сторону плюсового полюса магнита. При этом ток движется, наоборот, в сторону отрицательного магнитного полюса.

Не важно, что вращается при механическом воздействии, обмотка или магнитное поле, – ток будет течь, пока вращение выполняется.

Генераторы, вырабатывающие трехфазное напряжение, могут иметь:

  • неподвижные магниты и подвижный (вращающийся) якорь;
  • неподвижный статор и магнитные полюса, которые вращаются.

В устройствах первой конструкции возникает потребность отбора большого тока при высоком напряжении. Для этого приходится использовать щётки (скользящие по контактным кольцам контакты).

Второе строение генератора проще и более востребовано. Здесь ротор – подвижный элемент, состоит из магнитных полюсов. Статор – неподвижная часть, собрана из пакета изолированных между собой листов железа и вложенной в пазы обмотки статора.

Информация. У ротора тело собрано из сплошного железа и имеет магнитные полюса в виде наконечников. Наконечники набираются из отдельных листов. Их форма подобрана с учётом того, чтобы генерируемый ток по форме был близок к синусоиде.

Полюсные сердечники имеют катушки возбуждения. На катушки подаётся постоянный ток. Подача осуществляется через графитовые щётки на кольца контакта, находящиеся на валу.

На схемах 3-х фазный генератор рисуют в виде трёх обмоток, угол между которыми равен 1200.

Существует несколько способов возбуждения генераторов, а именно:

  • независимый – с помощью аккумулятора;
  • от возбудителя – при помощи дополнительного генератора, закреплённого на одном валу;
  • благодаря самовозбуждению – собственным выпрямленным током.

Сюда же относится магнитное возбуждение, подаваемое от магнитов постоянной природы.

 Трёхфазный генератор переменного тока

Схемы трехфазных цепей

Обмотки генератора или трансформатора в трёхфазных цепях можно соединить между собой по двум схемам:

  • звезда;
  • треугольник.

Соединения выполняются на клеммнике (борно) агрегата или трансформатора, куда выводятся концы обмоток.

 Соединение перемычками обмоток

Присоединение нагрузки к генератору (трансформатору) можно произвести по следующим схемам:

  • присоединение «звезда – звезда» с использованием нулевого проводника;
  • подключение «звезда – звезда» без использования нулевого провода;
  • подсоединение «звезда – треугольник»;
  • схема «треугольник – треугольник»;
  • соединение «треугольник – звезда».

Внимание! Такое разнообразие схем вызвано тем, что собственные обмотки генератора и собственные обмотки нагрузки могут быть соединены по-разному. При различных типах сопряжения получаются разные соответствия между фазными и линейными значениями.

Соединение может быть выполнено на заводе при сборке генератора, к месту подсоединения питающего кабеля уже выведены вторые концы обмоток. Информация о схеме соединения обмоток наносится на прикреплённую к статору машины табличку.

На электрических двигателях, трансформаторах или иных потребителях также производят необходимые манипуляции по переключению выводов обмоток. На картинке, приведённой ниже, красным маркером отмечены концы обмоток, соединённые перемычкой. Синим маркером – фазы питания.

Соединения на борно двигателя

Соединение звездой

Буквенное обозначение начала обмоток – «А», «В», «С», концов – «X», «Y», «Z». Нулевая точка маркируется как «О». У каждой обмотки есть два конца. При соединении «звезда» все три одноименных вывода обмоток (начала) соединяются между собой в одну точку «О». К свободным концам подключается нагрузка.

 Схема соединения обмоток «звездой»

Соединение треугольником

При выполнении этого присоединения на борно ставятся перемычки, включающие обмотки в следующей последовательности:

  • конец «А» – с началом «В»;
  • конец «В» – с началом «С»;
  • конец «С» – с началом «А».

Графическое изображение катушек становится похожим на треугольник, отсюда пошло название.

Когда хотят использовать подключаемый асинхронный двигатель с максимальным коэффициентом полезного действия, то его обмотки соединяют в треугольник. В этом случае фазные напряжения совпадают (Uл = Uф), линейный ток будет вычисляться по формуле:

Подключая в качестве нагрузки двигатель, необходимо учесть ряд нюансов:

  • достигается увеличение мощности в 1,5 раза;
  • повышается значение пускового тока, по сравнению с рабочим в 7 раз из-за тяжёлого запуска;
  • резкое увеличение нагрузки на валу электромашины будет вызывать резкое увеличение тока.

Из-за всего этого есть риск возникновения перегрева машины, что не происходит при соединении обмоток нагрузки по схеме «звезда». Там двигатель не расположен к перегреванию, и его пуск осуществляется плавно.

Включение обмоток по схеме «треугольник»

При двух видах включения обмоток различают и дают определение двум видам токов: линейному и фазному. Запомнить различия просто:

  • ток, протекающий через проводник, который соединяет источник с приёмником, называется линейным;
  • ток, движущийся по обмоткам источника или нагрузки, называется фазным.

Стоит обратить внимание на формулы мощности при различных схемах соединения источника с нагрузкой.

Мощность тока при схеме «звезда» определяется по формуле:

P = 3*Uф*Iф*cosϕ = √3*Uл*Iл*cosϕ,

где:

  • Uф – фазное напряжение;
  • Uл – линейное напряжение;
  • Iф – фазный ток;
  • Iл – линейный ток;
  • cosϕ – сдвиг фаз.

Мощность тока при схеме «треугольник» вычисляется по формуле:

P = 3* Uф* Iф*cosϕ = √3*Uл*Iл*cosϕ.

К сведению. Обращать внимание на линейный и фазный токи необходимо тогда, когда генератор (источник) нагружается несимметрично при подключении нагрузки.

Соединения в трёхфазной цепи

Фазное и линейное напряжение в трехфазных цепях

Следующий параметр, который требует внимательного рассмотрения, – это напряжение. Так же, как и токи, напряжение в этом случае бывает фазное и линейное. Чтобы было понятнее их отличие, лучше всего рассмотреть графическое изображение векторов напряжений (фаз). Уже известно, что они расположены друг к другу под углом 1200. Таков угол между обмотками трёхфазного генератора.

асположение векторов напряжений на диаграмме

Сохраняя угол наклона вектора Ub, откладывают его (изменив знак) от точки, где заканчивается вектор Ua. Тогда из полученной векторной диаграммы видно, что вектор линейного напряжения Uл равен расстоянию между точкой начала вектора напряжения Ua и точкой конца вектора напряжения Ub. Заметно, что вектор линейного напряжения превышает фазное. Насколько большая эта разница, можно определить, пользуясь формулой:

Так как sin600= √3/2, то формула принимает вид:

Значит, Uл = 1,73*Uф

При практических измерениях параметров напряжения фазное напряжение измеряют, касаясь щупами тестера фазного и нулевого проводников. Линейное значение должно измеряться прикосновением щупами к двум фазным проводникам.

Подключение нагрузки к источнику в трёхфазной цепи может осуществляться, как по трём проводам, без нулевого проводника, так и с его использованием. Всё зависит от того, какого типа нейтраль у сети. В сетях с глухозаземлённой нейтралью нулевой проводник служит для избегания перекоса по фазам. К тому же его используют в цепях защиты от пробоя изоляции на корпус оборудования. Он даёт возможность для срабатывания защитного отключения или перегорания вставки предохранителя.

Сети с изолированной нейтралью прекрасно работают по трём фазным проводам. Соединения такого типа исключают одновременное использование и фазного, и линейного напряжения. При такой схеме существует риск получить удар током при пробое изоляции.

Отличия от однофазного тока

Как правило, в многоквартирные дома подводится трехфазный переменный ток. Это обусловлено подключением большого числа однофазных нагрузок. В этом случае есть возможность равномерно нагрузить каждую фазу цепи трансформаторной подстанции. Это позволит не допустить перекоса межфазного и фазного напряжений.

Основные различия, по сравнению с однофазным током, лежат в следующей плоскости:

  • линейное напряжение не рассчитано на питание однофазных потребителей;
  • величина мощности нагрузки зависит от сечения питающего кабеля;
  • возможность включения в сеть трёхфазных потребителей;
  • допустимость переключения однофазного потребителя на другую фазу.
Читайте также:  Уравнение выражает зависимость силы тока от времени в колебательном контуре i 5 cos 10 5t

В связи с этим использование трёхфазного тока более эффективно на производстве.

Распределение электроэнергии

Важно! Стоимость оборудования, кабельной продукции, электроэнергии, приборов учёта при подведении к объекту напряжения, равного 380 В, значительно выше, чем однофазной сети.

Какой вариант тока выбрать, трёхфазный или однофазный, решать владельцу жилья. Особенно это касается больших частных домов, где современное электрооборудование требует наличия всех трёх фаз. Затраты на подведение 3-х фазного тока и установку узла учёта с лихвой окупятся возможностями использования трёхфазных потребителей в приусадебном хозяйстве.

Видео

Источник



Трехфазные источники напряжения.

ГЛАВА 4.ТРЕХФАЗНЫЕ ЦЕПИ

Трехфазные цепи при соединении звездой

Особенности трехфазных систем.

Трехфазная система переменного тока широко используется в силовых электротехнических и энергетических установках. Впервые такая система была продемонстрирована русским инженером М. О. Доливо-Добровольским в 1891 году при передаче энергии на электротехническую выставку во Франкфурте-на-Майне.

Трехфазная система переменного тока представляет собой совокупность трех отдельных цепей, объединенных в одну общую систему. Напряжения в такой системе имеют одинаковую амплитуду и сдвинуты между собой по фазе на 120°. При этом последовательность чередования фаз может быть прямой или обратной. При прямой последовательности напряжение каждой последующей фазы отстает от предыдущей на угол, равный 120°. При обратной последовательности напряжение каждой последующей фазы опережает предыдущую на угол, равный 120°.

В трехфазной системе используются специальные трехфазные генераторы. В энергетических установках применяются специальные трехфазные электромеханические генераторы, а в электротехнических установках — это различного рода статические инверторы.

Основными применениями трехфазных систем являются:

□ передача энергии на большие расстояния,

□ питание асинхронных трехфазных двигателей,

□ создание постоянных напряжений с малыми пульсациями,

□ питание электросварочного оборудования и т. д.

Трехфазные источники напряжения.

Трехфазные источники напряжения создают три напряжения, сдвинутые относительно друг друга на треть период (или угол, равный 2π/3). Форма этих напряжений может быть различной: синусоидальной, прямоугольной, многоступенчатой, импульсной с широтной модуляцией. Однако наибольшее распространение получили генераторы, которые создают три гармонических напряжения:

(4.1)

Схема такого генератора показана на рис. 4.1а. Генератор содержит три обмотки, в которых индуктируются три напряжения ЕА, ЕВ, ЕС, соединенные между собой в точке 0. Векторная диаграмма для прямого чередования фаз приведена на рис. 4.1б, а для обратного — на рис. 4.1е.

Мгновенные значения этих трех напряжений для прямого чередования фаз показаны на рис. 4.1г.

Комплексные значения трех напряжений генератора в соответствии с (4.1) можно представить в виде

(4.2)

где Е — действующее значение напряжения генератора,

α = e 2π j = е j 120 — фазный множитель трехфазной системы (оператор поворота на 120°).

Очевидно, что умножение на α поворачивает вектор напряжения Е на угол, равный +120°. Аналогично, умножение на α -1 поворачивает вектор Е на угол -120°, что эквивалентно умножению на α 2 = e j 240 . Сумма трех единичных векторов а 0 + а ] + а 2 = 1 + а + а 2 = 0.

Провода, соединяющие фазы генератора и приемника, называются линейными, а токи в них — линейными токами. Напряжения ЕА, Ев, Ес между началами и концами фаз генератора называются фазными Uф, а напряжения ЕВА, еас, Есв между началами фаз генератора — линейными Uл. Для симметричного трехфазного генератора Uл = √3Uф.

Соединение приемников звездой. Соединение приемников звездой представляет такое включение фаз приемника, при котором все начала (или концы) фаз соединены в один узел , называемый нулевой (или нейтральной)точкой приемника. На рис. 4.2, а показано соединение звездой фаз генератора ЕА, Ев, Ес, сопротивлений приемников ZA = rА + jxA, ZB = rB + JxB, Zc = rc+ jxc и сопротивления нулевого провода Z = r + jx. Векторная диаграмма, cоответствующая такому включению, приведена на рис. 4.2, б.

Линейные и фазные напряжения приемника связаны между собой соотношениями:

(4.3)

Падение напряжения на сопротивлении Z нулевого провода определяется как напряжение между двумя узлами 0′-0.

(4.4)

Если известны напряжения генератора и сопротивления фаз приемника,

то фазные напряжения определяются по формулам:

(4.5)

Токи в фазах приемника IА,Iв,Iс имеют значения

(4.6)

Аналогично определяется ток в нулевом проводе

(4.6а)

При отсутствии нулевого провода следует принять Y = 0. Ток в нулевом проводе равен сумме фазных токов

(4.7)

Теперь перейдем к рассмотрению различных режимов работы трехфазной системы при соединении генераторов и приемников звездой с нулевым и нулевого провода.

Равномерная нагрузка фаз генератора.При равномерной нагрузке фаз генератора проводимости нагрузки YA = YB = Yc = Yn и, следовательно, из уравнений (25.6), (25.7) находим, что

(4.8)

Отсюда следует, что при равномерной нагрузке фаз напряжение между нулевыми точками генератора и нагрузки U = 0 при любом сопротивлении нулевого провода, в том числе и при его отсутствии.

Кроме того, фазные напряжения генератора равны фазным напряжениям приемника

Векторная диаграмма при равномерной нагрузке фаз генератора приведена на рис. 4.3, а. При симметричной системе напряжений генератора линейные и фазные напряжения приемника связаны соотношением Uл =√3Uф, а линейные токи равны фазным Iл =Iф.

Очевидно, что при равномерной нагрузке фаз нулевой провод можно исключить без изменения при этом токов и напряжений приемников.

Неравномерная нагрузка фаз генератора.При неравномерной нагрузке фаз генератора следует рассматривать два случая: при наличии или отсутствии нулевого провода. Если нулевой провод присутствует, то токи в нагрузках и нулевом проводе определяются по формулам (4.6). При этом напряжения на нагрузках можно определить по формулам (4.5), а напряжение на нулевом проводе — по формуле (4.4).

Если сопротивление нулевого провода принять равным нулю (Z = 0), то напряжение U <)= 0 и, следовательно, фазные напряжения приемника равны фазным напряжениям генератора

При этом ток в нулевом проводе определяется по формуле (4.7). Векторная диаграмма для этого случая приведена на рис. 4.3,б.

Если нулевой провод отсутствует (Y = 0), то нулевое напряжение опреде­лится по формуле

При этом фазные напряжения приемника не равны фазным напряжениям генератора и определяются выражениями (25.5). Векторная диаграмма для этого случая приведена на рис. 4.3, в.

Если известны линейные напряжения UAB,UBC,UCA, то фазные напряжения можно вычислить по формулам

(4.9)

Короткое замыкание фазы приемника.Короткое замыкание фазы приемника является по своей сути частным случаем неравномерной нагрузки фаз генератора. При наличии нулевого провода короткое замыкание любой фазы приводит к аварийной ситуации, так как ток в этой фазе резко увеличивается.

Короткое замыкание одной из фаз приемника при отсутствии нулевого провода не приводит к аварийной ситуации, так как линейные напряжения сети прикладываются в этом случае к двум другим фазам приемника.

Так, например, при коротком замыкании фазы А напряжение на ней становится равным нулю UА = 0,анапряжения двух других фаз становятся равными линейным напряжениямUв = -UAB,UC = UCA, т.е. увеличиваются в √3 раз. Соответственно во столько же раз увеличиваются и значения токов этих фаз. При этом фазный ток замкнутой фазы увеличивается и становится равным IA = — (IВ + Iс). Нулевое напряжение становится равным фазному напряжению генератора U= ЕА. Векторная диаграмма для этого случая приведена на рис. 4.3, г.

Обрыв линейного провода.Если в трехфазной системе с нулевым прово­дом произойдет обрыв одного линейного провода, то это приведет к исчезнове­нию тока и напряжения в этой фазе. Напряжения на неповрежденных фазах не изменятся. Так, например, при обрыве фазы А ток в этой фазе становится равным нулю [IA = 0). Ток в нулевом проводе будет равен I = (Iв+Iс).Векторная диаграмма для этого случая приведена на рис. 4.3, д.

При обрыве линейного провода в трехфазной системе без нулевого прово­за неповрежденные фазы оказываются соединенными последовательно и под­ученными к одному линейному напряжению. Так, например, при обрыве фазы А неповрежденные фазы В и С оказываются включенными последовательно на напряжение UBC, т. е. U BC = UB-UC. При этом напряжения на фазах B и С распределяются пропорционально их сопротивлениям ZB, Zc. Векторная диаграмма для этого случая приведена на рис. 4.3, е.

Пример1.Требуется определить токи в фазах приемника, соединенного звездой без нулевого провода, если сопротивления нагрузок имеют значения ZA = 5 Ом ,ZB=ZC=10 Ом, а фазное напряжение генератора Е = 100 В. Построить векторную диаграмму для токов в цепи.

Решение.Определим нулевое напряжение, пользуясь формулой (4.4). Поскольку два сопротивления нагрузки имеют одно и то же значение ZB=ZC, то формула (26.4) несколько упрощается. Учитывая, что а = е j 120 ° =(-1 +j√3)/2 и а -1 =е — j 120 ° =(-1-j√3)/2, получим из формулы (4.4)

Найдем напряжения на фазах приемника

Определим токи в фазах приемника:

Векторная диаграмма, соответствующая полученному решению, приведена на рис. 4.4.

Источник