Меню

Источник питания с большим выходным током

Работа нескольких источников питания на общую нагрузку: возможные варианты и компромиссы

Arthur Russell, Vicor Corporation

Существует множество причин, которые могут побудить разработчика к параллельному включению источников питания постоянного тока. Некоторые из них обусловлены экономическими и логистическими аспектами, другие направлены на обеспечение требуемого тока системы, уровня характеристик и надежности.

Если рассматривать вопрос с непроектной стороны, возможность параллельного включения источников питания может позволить использовать одну модель блока питания во всей номенклатуре выпускаемых изделий, как отдельно, так и в различных комбинациях. Это может упростить поиск комплектующих, увеличить объем закупок однотипных устройств и оптимизировать управление запасами.

С технической точки зрения обосновать необходимость параллельного включения источников питания, конечно же, сложнее. Во-первых, это может быть своеобразной «страховкой» на случай, если выяснится, что реальный ток, требуемый продукту, превышает планируемый. Такое может произойти, например, из-за отсутствия компонентов с более низким потреблением мощности, или же после дополнительных маркетинговых исследований, показавших необходимость добавления новых функций. Во-вторых, параллельное соединение может обеспечить избыточность N+1, и даже N+2 для защиты от одиночных отказов, или возможность горячей замены отказавшего источника без воздействия на систему. В-третьих, можно использовать известные, проверенные источники питания с хорошо изученными характеристиками и типоразмерами, чтобы снизить неопределенность и проектные риски. Наконец, это позволяет «перераспределять тепло» за счет дополнительной гибкости в физическом размещении преобразователей энергии, если одно более мощное устройство в ограниченном объеме рассеивает слишком много тепла.

Из гибкости и потенциальных преимуществ соединения нескольких источников вытекает очевидный вопрос: всякий ли блок питания без изменений, «как есть» может быть использован в параллельной конфигурации? Ответом будет «нет». Это зависит от конструкции источников, технологии соединения, а также от причин, побуждающих включать их параллельно.

На первый взгляд, самым очевидным и легким способом параллельного объединения источников будет простое соединение их выходов. Но в большинстве случаев это работать не будет, так как каждый блок питания имеет свою схему стабилизации выходного напряжения, которая не только будет стремиться восстановить это напряжение при изменениях нагрузки, но и попытается противодействовать контурам регулирования других источников.

Простое параллельное соединение традиционных источников питания с внутренним опорным напряжением и усилителем ошибки, сравнивающим это напряжение с выходным, не приведет к повышению выходной мощности всего массива. Различия в параметрах блоков питания всегда будут приводить к тому, что только один из них, с наибольшим относительно выходного опорным напряжением, будет стремиться отдавать весь ток в нагрузку, в то время как остальные не будут нагружены вовсе.

В этом случае, как только нагрузка превысит возможности этого «ведущего» источника питания, он может либо войдет в режим ограничения тока (который может быть, а может и не быть предусмотрен его конструкцией), либо будет интерпретировать перегрузку как аварийный режим, и отключится. В зависимости от типа источника, эта ситуация может привести к дисбалансу системы питания, особенно, если она возникает во время обычной работы устройства. В дальнейшем, в случае отключения источника из-за перегрузки, всю нагрузку примет на себя следующий источник с наибольшим опорным напряжением, и он точно также отключится. Это быстро приведет к обрушению всей шины питания.

Связка соединенных напрямую источников питания может функционировать нормально лишь в том случае, когда один источник работает в режиме стабилизации напряжения (CV – constant-voltage mode), а остальные – в режиме стабилизации тока (СС – constant-current mode) с чуть бóльшим выходным напряжением. Отметим, что далеко не во всех источниках питания предусмотрена возможность выбора выходного режима. Источники питания, на выходах которых установлено более высокое выходное напряжение, обеспечат постоянство выходного тока, а напряжение на выходе каждого из них будет снижаться до тех пор, пока не сравняется с напряжением источника CV. Нагрузка должна потреблять ток, достаточный для того, чтобы гарантировать, что источники, которые должны работать в режиме CC, будут оставаться в этом режиме. Следует обратить внимание, что использование двух режимов означает, что источники уже не являются строго идентичными, и тем самым одно из преимуществ параллельной конфигурации сводится на нет.

Прямое соединение становится практичным, если источники питания специально разработаны для поддержки такой топологии, или если имеется единый усилитель ошибки петли обратной связи, вырабатывающий сигнал рассогласования для всех остальных источников питания, чтобы позволить им распределить между собой отдаваемую в нагрузку мощность. Однако такой метод требует наличия «общей шины» для передачи сигналов управления от ведущего источника питания к ведомым.

Другой подход заключается в добавлении небольших балластных резисторов последовательно с выходом каждого источника питания (Рисунок 1), которые выравнивают распределение токов нагрузки между источниками в группе даже тогда, когда их схемы управления отслеживают разные выходные напряжения. Балластные резисторы несколько ухудшают качество стабилизации нагрузки, причем степень этого ухудшения зависит от величины разброса ошибок уставок, для компенсации которых используются резисторы. Однако эти балластные резисторы также рассеивают тепло, что ухудшает КПД системы.

Рисунок 1. Один из подходов заключается в использовании относительно низкоомных
балластных резисторов на выходе каждого источника питания, однако это
приводит к повышенному тепловыделению и снижению общего КПД.

Этот «ИЛИ» тот?

Казалось бы, «простое» решение дилеммы прямого подключения состоит в том, чтобы всего лишь использовать диод между каждым источником питания и общей точкой, объединяющей все источники. Такой метод (Рисунок 2) обычно называют диодным «ИЛИ». Диодное «ИЛИ» очень эффективно тогда, когда нужно исключить возможность протекания тока вне общей нагрузки, но, как правило, недостаточно для устранения ошибок распределения между источниками питания с независимыми усилителями ошибки, поскольку излом характеристики проводимости диода достаточно резок для того, чтобы параметрические различия в уставках по-прежнему оставались причиной значительного дисбаланса источников.

Рисунок 2. В принципе, выходы нескольких источников питания могут быть
объединены с помощью диодов, изолирующих источники друг от
друга, но при такой конфигурации возникает множество проблем,
связанных с балансировкой и распределением токов.

Как правило, диодное «ИЛИ» требуется для работающих независимо источников питания, выходные токи которых могут быть как вытекающими, так и втекающими (работа в двух квадрантах). Эффект прямого параллельного соединения таких источников питания без использования диодов будет намного хуже, чем в случае одноквадрантных источников. В то время как одноквадрантные источники питания лишь теряют точность при подключении к общей нагрузке, двухквадрантные источники будут активно бороться за контроль над общим выходным напряжением. Это приведет к превышению токов, циркулирующих в группе источников питания, над током в нагрузке, и, возможно, станет причиной немедленной перегрузки одного или нескольких источников.

Кроме того, если диоды имеют отрицательный температурный коэффициент порога проводимости, они даже будут способствовать нарушению распределения токов в группе источников. Один из способов смягчения этой проблемы заключается в использовании выпрямителей с положительным температурным коэффициентом – на диодах Шоттки, или на полевых транзисторах, выполняющих функции диодов в схеме активного «ИЛИ», однако диоды могут снизить общий КПД за счет прямого падения напряжения, а активное «ИЛИ» может увеличить стоимость и сложность схемы.

В некоторых случаях диодное «ИЛИ» может способствовать повышению надежность на системном уровне. Особенно интересен случай, когда в одном из блоков питания происходит короткое замыкание выходного полевого транзистора или конденсатора, что может поставить под угрозу работу общей шины выходного напряжения. Диоды схемы «ИЛИ» быстро отсекут короткое замыкание от общей выходной шины и обеспечат устойчивость и надежность системы.

Кто здесь главный?

Чтобы надежно и предсказуемо функционировать в общей группе, источники питания, как правило, должны специально проектироваться для параллельной работы. Необходимы синхронизация при запуске, координация цепей защиты от неисправностей и стабильность контура обратной связи.

Для группы источников питания, соединенных параллельно с целью увеличения полезного тока нагрузки, требуется использование таких методов управления петлей обратной связи, которые учитывают совместную работу источников. Распространенной стратегией является включение источников питания без внутренних усилителей сигналов ошибки, когда вместо этого все источники объединяются в группу с общим входом управления, подключенным к одному усилителю ошибки. Этот усилитель регулирует выходное напряжение системы, а затем его сигнал обратной связи распределяется между всеми источниками питания в системе.

Основным преимуществом этой популярной стратегии управления является отличная стабилизация выходного напряжения. Кроме того, ошибки распределения уходят на второй план перед производственным разбросом коэффициентов усиления широтно-импульсных модуляторов преобразователей. С другой стороны, использование одного усилителя ошибки и однопроводной шины управления создает уязвимую для неисправностей точку, которая может стать источником проблем в некоторых высоконадежных системах. Кроме того, параметрические отклонения в модуляторе трудно контролировать, что вынуждает производителя к компромиссному решению в пользу управления распределением токов нагрузки.

В варианте с общей петлей регулирования ошибки распределения токов можно сделать минимальными, если жестко ограничить разброс параметров цепей управления источников. Во избежание перегрузки какого-либо источника в группе из-за больших ошибок распределения необходимо либо снизить расчетную нагрузку группы, либо использовать определенные меры противодействия. Для выравнивания ошибок распределения токов, обусловленных разбросом параметров цепей управления, может использоваться заводская регулировка для калибровки выходных ошибок (дорогостоящий метод), или добавление в каждый источник массива локального контура стабилизации тока (что увеличит сложность схемы и количество компонентов). Для измерения тока этих локальных петель, как правило, к источнику питания добавляют резистивный шунт.

Еще один проблемой, возникающей в случае группирования изолированных источников питания, имеющих собственные узлы управления с опорными уровнями на первичной стороне DC/DC преобразователя, является передача сигнала усилителя ошибки через изолирующий барьер между первичной и вторичной частями схемы. Использование изоляции часто увеличивает стоимость решения, отбирает существенную часть ценной площади печатной платы и, в зависимости от используемых для изоляции компонентов, может неблагоприятно влиять на надежность.

Вторая стратегия организации контура управления, позволяющая объединять источники в параллельные группы, основана на использовании сопротивлений силовых проводников в качестве балластных резисторов для метода, изображенного на Рисунке 1. При реализации технологии, называемой «droop-share» (распределенное снижение напряжения), каждый источник питания имеет свое опорное напряжение и интегрированный усилитель ошибки, но вслед за увеличением тока нагрузки опорное напряжение намеренно и линейно снижается на некоторую определенную величину.

Запараллеливание источников питания может оказывать негативное влияние на переходную характеристику и качество стабилизации выходного напряжения. В методе droop-share для распределения мощности между модулями в группе намеренно используется обратная характеристика регулирования. Из-за этого стабильность выходного напряжения группы droop-share, как правило, бывает хуже, чем у группы, созданной с одним традиционным усилителем ошибки. Если это нежелательно, для эффективной компенсации отрицательного наклона характеристики управления можно использовать внешний контур регулирования. Получающаяся погрешность статического регулирования идентична погрешности для случая традиционного усилителя ошибки, так как внешний контур сам по себе является интегратором ошибки.

Конструкцию системы питания можно упростить

Поставщики источников питания могут предпринять определенные шаги, облегчающие их параллельное соединение. Например, в свои модульные DC/DC преобразователи (DC/DC Converter Module – DCM) компания Vicor встроила цепи регулирования выходного напряжения с отрицательным наклоном нагрузочной кривой, благодаря которым при увеличении тока нагрузки внутренний стабилизатор может слегка уменьшать выходное напряжение. Это эффективно действует как небольшой балластный резистор, однако, без каких-либо реальных резисторов, и с несколькими дополнительными существенными отличиями (Рисунок 3).

Рисунок 3. Выпускаемые Vicor преобразователи серии DCM сконструированы
таким образом, чтобы для параллельного включения было достаточно
просто соединить их выходы. Не нужны ни диоды, ни балластные
резисторы, ни какие-либо другие элементы балансировки нагрузки.

Во-первых, это иной способ реализации балластного резистора, не связанный с потерями энергии, поскольку при отсутствии физического резистора, соответственно, нет выделения тепла. Второе отличие касается динамической реакции, так как реальный резистор для частот до сотен килогерц может считаться бесконечно «широкополосным» элементом, вольтамперная характеристика которого остается неизменной благодаря отсутствию высокочастотных паразитных реактивных составляющих. Вследствие этого любое мгновенное изменение напряжения на резисторе приводит к немедленному соответствующему изменению тока.

В преобразователях DCM требуемая форма нагрузочной характеристики реализуется через дискретную модуляцию цифро-аналогового преобразователя, вырабатывающего опорное напряжение для усилителя ошибки. Расчет подходящего значения опорного напряжения основан, в первую очередь, на оценке величины выходного тока DCM и включает некоторое усреднение для снижения уровня шумов. Поэтому резистор, который эмулируется нагрузочной характеристикой DCM, ведет себя так, как если бы к нему был подключен параллельный конденсатор значительной емкости, и при взгляде на рисунки из технических описаний, иллюстрирующие отклик источника на скачок нагрузки, отчетливо просматривается результирующая RC-постоянная времени.

Тем не менее, такие выходные нагрузочные характеристики позволяют непосредственно соединять выходы нескольких DCM в параллель, несмотря на то, что каждый из них по-прежнему имеет свой собственный активный усилитель ошибки петли регулирования. Если активные сопротивления проводников между выходами источников и нагрузкой идентичны, регулировки выходных напряжений одинаковы, и все источники имеют одну и ту же температуру, то распределение токов нагрузки внутри группы DCM будет идеально ровным. Таким образом, соединенные параллельно DCM ведут себя как один DCM, но с бóльшим выходным током (Рисунок 4).

Читайте также:  Диод в цепи постоянного тока что дает
Рисунок 4. При параллельном соединении источников DCM компании Vicor вся
группа работает как один преобразователь. Кроме того, как видно
из нагрузочной характеристики, в случае избыточного резервирования
уровня N+1 относительно максимальной нагрузки группа продолжает
нормально функционировать даже при отказе одного из
преобразователей.

Благодаря отрицательному температурному коэффициенту выходного напряжения, изменения температуры отдельных устройств в группе преобразователей семейства DCM не становятся источником проблем. Если один источник нагружен больше, чем другие, его температура повысится относительно остальных устройств группы, что, в свою очередь, приведет к уменьшению его выходного напряжения. Поскольку выходные напряжения остальных источников группы параллельных DCM согласованы с напряжением нагруженного DCM, их выходы, в соответствии с их нагрузочными характеристиками, будут увеличивать свои доли токов и возвращать систему обратно к равновесию.

Аналогичные подходы к решению проблем параллельного соединения DC/DC источников питания применимы как к преобразователям, существенно более мощным, чем выпускаемые Vicor устройства серии DCM, так и к интегральным источникам питания, предназначенным для намного меньших нагрузок. Например, выпускаемый Linear Technology трехамперный LDO регулятор LT3083 поддерживает параллельную работу с использованием балластных резисторов сопротивлением 10 мОм, включенных между выходом каждого регулятора и общей выходной шиной.

Параллельное соединение источников питания является привлекательной и жизнеспособной технологией, дающей такие преимущества, как сокращение объема складских запасов, унификация продуктов, дополнительный выходной ток и избыточное резервирование по схеме N+1. Однако это должно делаться с пониманием особенностей тех или иных технологий параллельного соединения, а также с четким представлением о структуре и работе контура обратной связи, который будет обеспечивать управление группой источников питания.

Источник

Стабильный источник высокого напряжения для питания ФЭУ

Применение фотоэлектронного умножителя — это очень простой способ получить высочайшую чувствительность фотоприемника, вплоть до регистрации единичных фотонов при прекрасном быстродействии. А учитывая массу ФЭУ, выпущенных в СССР и до сих пор лежащих на складах, это еще и относительно недорого (современные «фирменные» ФЭУ все-таки неприлично дороги для любительского применения). Но для питания фотоэлектронного умножителя нужен источник напряжения в 1-3 киловольта, и притом очень стабильный.

Дело в том, что чувствительность ФЭУ зависит от анодного напряжения экспоненциально и очень резко: она увеличивается в 10 раз при увеличении напряжения на 80-300 В, в зависимости от типа ФЭУ. И если нужно обеспечить стабильность усиления на уровне процента, для некоторых ФЭУ необходимо, чтобы напряжение не менялось больше, чем на 0,1-0,3 В!

В данной статье я привожу схему источника высокого напряжения для ФЭУ, который хорошо зарекомендовал себя в лабораторных условиях. Он обеспечивает выходное напряжение от нескольких сотен до 1500 В при выходном токе до 1 мА и стабильности не хуже 0,2 В за час при неизменном потребляемом токе после прогрева. Несложная переделка увеличивает верхний предел напряжения до 3 кВ, правда, ценой меньшей стабильности.

Схема

Основой источника является двухтактный инвертор, работающий на трансформатор для CCFL-ламп. Инвертор выполнен на основе отечественной микросхемы для ЭПРА — КФ1211ЕУ1. Равных этой микросхеме мне в продаже найти не удалось: она может управлять затворами полевых транзисторов непосредственно и для работы ей нужно лишь два внешних элемента (времязадающие резистор и конденсатор), при этом она штатно работает от 5 В и стоит недорого. К сожалению, НПО «Дельта» давно не производит эту микросхему, но она до сих пор есть в продаже и добыть ее не составляет труда. Никаких средств регулирования коэффициента заполнения у этой микросхемы нет, но нам это не нужно — регулирование выходного напряжения осуществляется изменением напряжения питания выходного каскада инвертора. Ключевым элементом является сдвоенный n-МОП-транзистор VT1 типа IRF7341. Резисторы R2 и R3 ограничивают броски тока при перезарядке емкостей затворов.

Инвертор работает на частоте 40 кГц. Опытным путем установлено, что на этой частоте примененный трансформатор работает лучше всего и имеет наилучший КПД. Частота эта задается цепочкой R1C1.

Трансформатор я использовал из серии TMS91429CT, имеющий две одинаковые первичные и две одинаковые изолированные друг от друга вторичные обмотки. Это дает возможность исключить умножитель напряжения с большими потерями, заменив его двумя однотактными выпрямителями, выходные напряжения которых складываются, образуя не совсем обычный на вид, но по сути такой же двухтактный выпрямитель. Нарисованная на схеме конфигурация работает с данным трансформатором несколько лучше, чем классическая «с отводом от середины». Если нужны более высокие напряжения, в каждой из «половинок» можно собрать удвоитель.

Резистор R8 и конденсатор C9 образуют фильтр, уменьшающий пульсации высокого напряжения. Резистор R10 снижает опасность смертельного поражения электрическим током: несмотря на то, что сила постоянного тока, вырабатываемого данным источником, не представляет никакой серьезной опасности, энергия, запасаемая в конденсаторе C9 вполне достаточна для того, чтобы убить, и ограничение пикового тока его разряда до

60 мА при максимальном напряжении эту возможность снижает (при кратковременном — сотые доли секунды — воздействии такой ток обычно не является смертельным). Вместе с тем, при токе 1 мА на этом резисторе падает 22 В, что, скорее всего, недопустимо. Поэтому если нужны токи больше сотни микроампер, его придется убрать, но в этом случае — помнить, что выходное напряжение источника — смертельно опасно. С резистором R10, впрочем, тоже, но опасность не столь высока.

Выходное напряжение, поделенное делителем R7R9 в 500 раз, подается на вход усилителя ошибки на ОУ DA1.2. На второй его вход подается опорное напряжение (через повторитель на DA1.1), которое задает выходное напряжение, которое в соответствии с коэффициентом деления делителя R7R9 будет в 500 раз больше (например, при опорном напряжении 3 В выходное составит 1,5 кВ). Коэффициент усиления усилителя ошибки подобран экспериментально. Его увеличение повышает точность стабилизации, но снижает устойчивость. Конденсатор C8 компенсирует задержку в петле обратной связи и обеспечивает устойчивость регулирования. Соотношение коэффициента усиления усилителя ошибки и постоянной времени цепи R6C8 — вопрос компромисса между точностью поддержания выходного напряжения и временем его установления.

Выходное напряжение усилителя ошибки подается на регулирующий элемент — p-МОП транзистор VT2. Транзистор полностью закрыт, когда напряжение на выходе DA1.2 близко к напряжению питания (то есть если высокое напряжение сильно превышает заданное), и полностью открывается при снижении его до нуля (при сильно заниженном высоком напряжении), что обеспечивает его поддержание на уровне несколько выше опорного напряжения, помноженного на коэффициент деления. Далеко не все МОП-транзисторы хорошо работают в линейном режиме, и указанный на схеме делает это вполне приемлемо. Резистор R4 предотвращает неустойчивость ОУ при работе на емкостную нагрузку, которой является затвор транзистора.

В качестве источника опорного напряжения может быть использован многооборотный потенциометр, питающийся от стабилизированного источника напряжения, но при повышенных требованиях к стабильности его может оказаться недостаточно, так как даже самые лучшие из таких переменных резисторов в той или иной степени «шумят», хаотически меняя сопротивление в небольших пределах, даже если ручку регулировки не трогают. Для ее повышения желательно ограничить диапазон плавной перестройки до 100-200 В и ввести переключатель для дискретной грубой установки напряжения. Другой вариант — сделать цифровой ИОН на основе какого-нибудь ЦАП.

Данная схема выдает высокое напряжение положительного знака. Для питания ФЭУ удобно использовать отрицательное напряжение питания с заземленным анодом. Для этого схему придется скорректировать — во-первых, изменив полярности диодов в высоковольтной части. Во-вторых, придется ввести в схему еще один операционный усилитель. Вместо делителя R9R7 у нас появляется инвертирующий усилитель с коэффициентом усиления минус 1/500 на ОУ DA2, и резисторы R9 и R7 оказываются в его цепи ООС.

Чтобы получить 3 киловольта, придется заменить выпрямители во вторичных цепях на удвоители напряжения и увеличить R9 до 100 МОм. Стабильность при этом ухудшится примерно в те же два раза.

Компоненты и монтаж

В низковольтных и слаботочных цепях можно использовать конденсаторы и резисторы типоразмера 0805 или даже 0603. Конденсатор C2 — танталовый. Конденсатор С4 — пленочный, так как через него протекает заметный импульсный ток и керамический SMD конденсатор здесь будет греться и быстро выйдет из строя.

Со стороны высокого напряжения необходимо монтировать все цепи переменного тока настолько короткими соединениями, насколько возможно, так как иначе они сильно излучают (однако, не забывая соблюдать изоляционные зазоры). Диоды набраны каждый из двух последовательно соединенных диодов на 1000 В. В связи с отсутствием в магазинах быстрых диодов на 1000 В в SMD-исполнении применены выводные диоды HER1008, установленные по два последовательно. Для уменьшения длины выводов они загнуты под корпус диода и обрезаны, и таким образом, диод переделан в SMD. При этом анод одного диода в паре спаивается с катодом второго непосредственно и максимально близко к выходу вывода из корпуса, а не через печатный проводник. Конденсаторы С6 и С7 также набраны из четырех конденсаторов 0,015 мкФ х 1000 В типоразмера 1812, соединенных последовательно-параллельно и спаянных «этажеркой» друг на друге. Конденсатор C9 произвольного типа — я использовал батарею из отечественных К15-4, для надежности залитую компаундом.

Резистор R8 — типоразмера 2512. R10 набран из десяти таких резисторов, соединенных последовательно на отдельной маленькой плате и залитых изоляционным компаундом. Аналогично можно поступить и с R9, либо применить резистор серии FHV-100. А совсем идеально поставить делитель фирмы Caddock серии THV10. От термостабильности данного резистора (а он нагревается проходящим через него током) зависит дрейф напряжения. Теплоизоляция его, увеличивая время установления стабильного напряжения, тем не менее, резко уменьшает его хаотичные колебания, поэтому настоятельно рекомендуется. Также при монтаже следует обратить внимание на возможные пути утечки, которые также резко снизят стабильность. На печатной плате следует предусмотреть прорези и окна, отделяющие высоковольтные цепи от низковольтных и между близко расположенными проводниками с резко различающимися потенциалами. И не жалейте спирта — малейшая влага, следы канифоли или палтцев — и напряжение будет скакать, как дикий мустанг. Само собой разумеется, что вся высоковольтная часть должна быть залита компаундом, так как иначе зазоры пришлось бы делать очень большими. А большие зазоры — это большая длина проводников и сильное излучение. При работе первоначального макета, где я использовал конденсаторы К78-1, выводные диоды со слегка укороченными выводами и зазоры, рекомендуемые при печатном монтаже на воздухе — на холостом ходу схема потребляла почти 200 мА при 1500 В, а неонка горела в 10 см от конструкции. Невозможно было даже посмотреть форму напряжения на первичных обмотках трансформатора — на щуп осциллографа наводилась помеха размахом под сотню вольт. Ни о каком практическом использовании столь сильно излучающей помехи схемы не могло идти речи. После перехода на SMD и максимально компактный монтаж (потребовавший заливки — на воздухе все тут же пробивается), потребляемый на холостом ходу ток упал до пары десятков миллиампер, а неоновая лампочка горела только вплотную к обмотке трансформатора. Разумеется, готовый прибор нужно поместить в металлический корпус, снабженный хорошим высоковольтным разъемом (например, типа LEMO).

Разводка печатной платы (свою не привожу, так как она оказалась не слишком удачной и в финальной конструкции покрылась, как плесенью, очагами навесного монтажа, исправляющего ошибки первоначального замысла) должна быть сделана с учетом того, что VT2 греется и отводит тепло через выводы (рассеиваемая мощность может достигать 2 Вт). VT1 остается при работе практически холодным. Кроме того, уделите внимание земле, особенно в окрестностях ключевых транзисторов. Последние вместе с DD1 удобно разместить под брюхом трансформатора, вокруг которого можно отделить земляной полигон зазором, соединив его с остальной землей в единственной точке около разъема питания.

И о заменах. Трансформатор может быть заменен практически любым аналогичным трансформатором с такой же конфигурацией обмоток (то есть две одинаковые первичные обмотки и две раздельные высоковольтные) и такой же габаритной мощностью, при этом может потребоваться подбор частоты коммутации и емкости конденсатора C4. Транзисторную сборку VT1 можно заменить на аналогичные отдельные n-МОП транзисторы с напряжением исток-сток не менее 20 В и током стока не менее 3 А, способные работать с 5 В на затворе. VT2 заменять нежелательно.

Источник

Как выбрать источник бесперебойного питания

Как выбрать источник бесперебойного питания

Аватар пользователя

Сколь бы надежен не был ваш поставщик электропитания, броски напряжения иногда случаются на любых линиях. Каждый пользователь ПК хоть раз, да сталкивался с внезапной перезагрузкой или отключением компьютера из-за неполадок на питающей линии. И компьютеры – не единственный вид техники, требующий бесперебойного электропитания.

Продолжительное отключение электропитания может привести к заморозке системы отопления частного дома. ИБП с подключаемыми аккумуляторами способен «продержать на плаву» циркуляционный насос и электронику котла в течение нескольких часов, и стоить такой ИБП будет намного дешевле, чем генератор с автозапуском.

Читайте также:  Магнитный момент витка с током определяется формулой

Роутер, подключенный к ИБП, позволит оставаться «онлайн» и при отсутствии электропитания. Потребляет роутер совсем немного и емкости аккумулятора даже недорогого «бесперебойника» хватит на пару-тройку часов его работы.

Серверам и внешним дисковым накопителям бесперебойное питание совершенно необходимо – внезапное отключение электричества может привести к потере данных.

И вообще, наличия ИБП требует любая автоматика, сбой в работе которой может привести к серьезным последствиям – медицинское и технологическое оборудование, системы пожарной и охранной сигнализации и т.д. Но параметры электропитания у разных видов техники разные, поэтому и ИБП для них потребуется с различными характеристиками.

Характеристики источников бесперебойного питания.

Вид устройства.

Резервный ИБП имеет наиболее простую конструкцию. Электроника источника следит за уровнем входного напряжения, и, при его выходе за установленные рамки (обычно +10% от номинала), переключается на питание от аккумулятора.

Конструкция проста и надежна, но в некоторых ситуациях от такого ИБП будет больше вреда, чем пользы. Например, если он имеет минимальное входное напряжение 180 В и используется для защиты компьютера с блоком питания, работающим от 110 до 240 В. Без ИБП компьютер бы спокойно работал, а ИБП при падении напряжения ниже входного (180 В) перейдет на аккумулятор и после его разряда выключит питание компьютера. Поэтому для этого вида ИБП следует обеспечить соответствие минимального и максимального напряжений «бесперебойника» и потребителя – лучше всего, если диапазон напряжений ИБП будет незначительно (5-10В) уже диапазона напряжений электроприбора. Например, для диапазона рабочих напряжений потребителя 180-240 В, диапазон ИБП должен быть примерно 190-230 — это позволит перейти на питание от аккумулятора до того, как напряжение станет неприемлемым для защищаемого прибора.

Кроме того, переключение на аккумулятор занимает некоторое время, что может быть критичным для некоторых видов техники. Например, для импульсных блоков питания с активным корректором мощности (APFC), которым оснащено большинство таких БП мощностью более 400 Вт. При подборе ИБП для компьютеров, специальной аппаратуры, аудио- и видеотехники с подобными блоками питания следует оставлять большой запас по мощности, либо выбирать ИБП другого вида.

Линейно-интерактивный ИБП, фактически, состоит из резервного ИБП и стабилизатора. При наличии в сети пониженного или повышенного напряжения, автоматический регулятор напряжения (AVR) стабилизирует его, а на аккумулятор ИБП переключается только при настолько большом отклонении напряжения от нормального, что стабилизировать его уже невозможно.

Линейно-интерактивные ИБП немного дороже резервных, но для бытового применения именно этот вид является оптимальным. Единственный случай, когда ему следует предпочесть резервный – когда в вашей сети стабильно пониженное напряжение, подходящее, однако, для защищаемого электроприбора. Резервный ИБП просто пропустит это напряжение в компьютер, а линейно-интерактивный будет его повышать до нормального. Но продолжительная работа в таком режиме может сильно сократить ресурс AVR (особенно на недорогих «бесперебойниках»).

Недостаток, связанный с кратковременным отсутствием питания во время переключения на аккумулятор у линейно-интерактивных ИБП также присутствует.

Устройства с двойным преобразованием (on-line) обеспечивают наилучшее качество электропитания. У ИБП этого вида аккумулятор подключен к цепи питания постоянно, поэтому провалы напряжения в момент перехода на автономное питание отсутствуют. Входной ток выпрямляется, его напряжение понижается до напряжения аккумулятора, после чего инвертор преобразует его в переменный 230 В /50 Гц.

Такие ИБП стоят заметно дороже остальных видов, зато выдают стабильную частоту, напряжение и форму синусоиды при любых помехах на входной линии питания.

Выходная мощность (ВА) стабилизатора определяет максимальную суммарную полную мощность подключенных к нему электроприборов. Однако следует иметь в виду, что приведенное в паспорте на электроприбор значение в Ваттах – это его активная мощность, т.е., выделяющаяся в виде тепла или света.

Многие подключаемые к ИБП электроприборы создают вдобавок к активной еще и реактивную нагрузку, и полная выходная мощность ИБП должна подбираться с её учётом. Для определения полной мощности электроприбора следует активную мощность поделить на коэффициент мощности (cos(φ)), обычно указанный в паспорте. Если найти это значение не удается, можно воспользоваться таблицей:

Поскольку чаще всего ИБП используется для защиты ПК, часто возникает вопрос: какую мощность имеет компьютер? Самый точный способ определения мощности – расчет на основе замера потребляемого им тока. Проще и безопаснее всего это сделать с помощью токовых клещей и самодельного удлинителя с раздельными проводниками.

Измерение тока с помощью мультиметра связано с опасностью поражения электрическим током и делать это, не обладая соответствующими навыками, небезопасно.

Измерение следует производить, дав на процессор и видеокарту максимальную нагрузку – это можно сделать с помощью требовательной к ресурсам игры или с помощью специальных программ (например, OCCT в режиме power supply). Измеренное значение умножается на величину напряжения в сети – это и будет искомая полная мощность (ВА) компьютера.

Простой, но грубый способ – взять максимальную мощность блока питания (в Ваттах), обычно приведенную на корпусе БП и поделить на коэффициент мощности. Реальная мощность компьютера, скорее всего, будет ниже, но уж точно не выше.

К примеру, для защиты компьютера с блоком питания без PFC мощностью 300 Вт и монитором мощностью 50 Вт потребуется ИБП с входной мощностью (ВА) 300/0,65+50/0,8 = 524 ВА. Поскольку реальная мощность системного блока, скорее всего, ниже 300 Вт, ИБП на 500 ВА могло бы и хватить для этого компьютера. Однако с учетом того, что пусковые токи (неизбежные при переключении на аккумулятор) могут превышать номинальные вдвое, выбор ИБП на 750 или 1000 ВА представляется более оправданным.

Следует также отметить, что недорогие ИБП часто характеризуются слабой перегрузочной способностью и не могут выдерживать высокие токи даже очень непродолжительное время (менее 100 мс). Поэтому при покупке недорогого ИБП необходимо следить, чтобы пиковая мощность нагрузки не превышала выходную мощность «бесперебойника».

Если определение полной выходной мощности (ВА) представляется слишком сложным, можно подобрать ИБП по активной выходной мощности (Вт) – обычно этот параметр тоже приводится в паспорте ИБП.

Однако большинство производителей при указании активной выходной мощности ориентируются на cos(φ) = 0,6-0,7, подходящий только при использовании ИБП для защиты компьютеров с блоками питания без PFC.

Коэффициент мощности многой другой техники выше, и, подбирая ИБП по активной мощности в ваттах, вы рискуете переплатить, выбрав ИБП более мощный, чем вам действительно необходимо.

Тип формы напряжения может быть важен для некоторых видов техники. В электродвигателях, трансформаторах, катушках индуктивности «ступенчатая» форма питающего тока приводит к дополнительным нагрузкам – это может проявляться изменением звука работы, увеличенным нагревом обмоток и ускоренным износом. Проблемы могут возникнуть с некоторыми моделями аудио- и видеотехники, измерительными приборами и медицинской техникой.

Импульсные блоки питания к форме напряжения невосприимчивы – ступенчатая аппроксимация синусоиды подходит для любых компьютеров. Проблемы, возникающие на современных блоках питания с активным корректором мощности (APFC) чаще всего связаны не с формой сигнала, а с недостатком запаса по мощности и низкой перегрузочной способностью ИБП. При переключении на аккумулятор и падении входного напряжения, APFC резко увеличивает потребляемый ток, при этом нарастание потребления происходит так быстро, что ИБП часто отключается защитным автоматом (токовым реле), при том, что контроллер даже не успевает «заметить» перегрузку.

Однако, некоторые блоки питания с APFC плохо работают при ступенчатой синусоиде – корректор успевает среагировать на горизонтальную «ступеньку» как на пониженное напряжение, увеличивает ток потребления и перегружает ИБП, приводя к срабатыванию его защиты и отключению. И, хотя многие БП с APFC прекрасно «уживаются» со ступенчатой синусоидой, чтобы не оказаться в ситуации, когда ПК откажется работать с «бесперебойником», следует либо убедиться в их совместимости перед покупкой, либо выбирать ИБП подороже: с «чистой» синусоидой и запасом по мощности, либо ориентироваться на устройство с двойным преобразованием. В последнем случае чрезмерный запас по мощности не нужен, а синусоида у таких устройств и так «чистая».

Тип выходных разъемов питания на современных ИБП может быть различным. Старые ИБП все имели выходные разъемы стандарта IEC 320 C13 («компьютерные») для подключения питающих кабелей системного блока и монитора.

Но роутеры, внешние жесткие диски и многие современные мониторы для подключения к сети используют обычную «евро» вилку. Поэтому сегодня уместнее выбирать ИБП с выходными разъемами типа CEE 7/* — «евророзетками». Обратите внимание, чтобы количество розеток соответствовало количеству потребителей.

Некоторые специализированные ИБП, предназначенные для создания линий бесперебойного электропитания, оснащаются клеммами для удобства прямого подключения линейных проводов.

Удобно, если ИБП имеет какой-нибудь интерфейс, по которому он может «сообщить» работающему на ПК приложению о пропадании напряжения. Это позволит сохранить все открытые документы, записать на диск данные из буфера и корректно завершить работу компьютера в автоматическом режиме, даже если оператора поблизости нет. Особенно это важно для серверов: сбой сервера – вещь неприятная, но она может стать еще неприятнее, если «испортятся» хранящиеся на нём данные из-за некорректного завершения работы. ИБП с интерфейсом USB или RS-232 подключается интерфейсным кабелем непосредственно к защищаемому компьютеру, на котором должно быть запущено соответствующее ПО.

Совсем другое назначение имеют разъмы RJ-11/RJ-45 расположенные парой IN/OUT — это защита телефонных и компьютерных сетей от импульсных помех (часто возникающих, например, во время грозы). Входную (уличную) линию следует подключать к разъему IN, а к разъему OUT — локальную телефонную или компьютерную сеть, которая, таким образом, будет защищена от приходящих «извне» помех.

Функция «холодного старта» позволяет осуществить запуск подключенных к ИБП электроприборов при отсутствии питающего напряжения. Холодный старт позволяет использовать ИБП как автономный источник питания для маломощной нагрузки.

Время автономной работы зависит от емкости установленных аккумуляторов и суммарной мощности подключенных потребителей. Производителем обычно указывается продолжительность автономной работы при определенной мощности нагрузки. Но зачастую мощность нагрузки сильно отличается от приведенной производителем. В этом случае следует иметь в виду, что емкость аккумулятора сильно зависит от тока разряда. При быстрой разрядке (5-10 минут) аккумулятор выдает всего 20-30% от номинальной емкости.

Так, если производителем приводится время автономной нагрузки в 5 минут при нагрузке 200 Вт, то при вдесятеро меньшей нагрузке (20 Вт) время автономной работы будет не 50 минут, а около двух часов, потому что емкость при разряде такой продолжительности будет примерно вдвое больше. Максимальная (100%) емкость аккумуляторной батареи достигается при продолжительности разряда в 20 часов и более, это следует учитывать, если предполагается длительная работа оборудования от ИБП.

«Бесперебойники», рассчитанные на продолжительную автономную работу, часто имеют возможность подключения дополнительных батарей. Это позволяет набрать емкость, необходимую для поддержания работы потребителей в течение необходимого времени.

Имейте в виду, что аккумуляторная батарея имеет ограниченный ресурс и через некоторое время (0,5-5 лет в зависимости от качества батареи и частоты циклов заряда/разряда) она потребует замены. В этом случае возможность замены батарей будет совсем нелишней. Оборудование, которое должно работать непрерывно, следует защищать с помощью ИБП с возможностью горячей замены батарей — т.е., без отключения ИБП от сети.

Варианты выбора источников бесперебойного питания.

Для защиты от кратковременных падений напряжения маломощных потребителей (роутеров, модемов, точек доступа) предназначены ИБП с «евророзетками» мощностью до 400 ВА.

ИБП мощностью 500-1000 ВА сможет «поддержать на плаву» простой офисный компьютер в течение времени, достаточного для сохранения всех открытых документов.

ИБП с «холодным стартом» способен обеспечить автономное питание электроприборов в условиях полного отсутствия питающей сети.

Если вам важно стабильное электропитание на выходе «бесперебойника» по минимальной цене, выбирайте среди линейно-интерактивных ИБП.

ИБП с двойным преобразованием гарантируют высокое качество питающего напряжения и обеспечивают полное отсутствие переходных процессов при пропадании внешнего питания.

Источник

Мощные высокопроизводительные источники питания от TRACOPOWER

Уже более 30 лет швейцарская компания Traco Electronic AG известна в России как производитель стандартных источников питания высокого качества для всех отраслей промышленности. Значительная часть потребителей в нашей стране ориентирована на производство продукции промышленного, железнодорожного и специального назначения, где эти источники успешно применяются, но еще не все знают, что среди продукции компании есть также мощные модульные источники от 150 Вт до 22 кВт в промышленных конструктивных исполнениях и с большим набором сервисных опций.

Серия TSC мощностью 40-2500 Вт

В состав серии TSC входят AC/DC источники питания и DC/DC-преобразователи мощностью 40-2500 Вт. Силовые импульсные AC/DC- и DC/DC-преобразователи предназначены для ответственных приложений в системах промышленной автоматизации и телекоммуникационном оборудовании, требующих обеспечения высокой долговременной надёжности.

Конструктивно преобразователи выполнены в виде Евро-кассет высотой 3U (рис. 1) и 6U (рис. 2) для установки в 19” конструктив, опционно предусмотрено также крепление модулей на стену, на шасси и на DIN-рейку (в зависимости от мощности). Преобразователи могут подключаться к сетям постоянного тока и переменного тока 115/230 В с частотами 47-400 Гц. В состав серии входят десятки типов модулей, каждый из которых может дополняться опциями, выбираемыми заказчиком. Преобразователи мощностью до 5 кВт не требуют принудительного охлаждения.

Читайте также:  Ты тока мама не горюй

Вся номенклатура модулей серии TSC мощностью 40-2500 Вт, рекомендованная для применения в новых разработках, разделена на группы, отличающиеся диапазонами входных напряжений: 18-36 В, 36-75 В, 80-160 В, 160-320 В (постоянный ток), 98-138 В/185-264 В (переменный ток). Каждая группа в свою очередь разделена на подгруппы с различными регулируемыми выходными напряжениями: 4,5-5,5 В; 11-13 В; 23-26 В; 45-55 В; 100-130 В; 200-250 В. Подгруппы содержат 12-14 типов преобразователей с различными выходными токами, общее число типов модулей в серии более 360, в таблице приведены классификационные параметры группы преобразователей с входным переменным напряжением 93-138 В/185-264 В с частотой 50/60 Гц.

Модули серии выпускаются в 12 различных конструктивных исполнениях (см. таблицу 1):

  • TSC 1200
    типоразмер 6U,
    габариты 262,5 х 164 х 50,4 мм,
    вес 1,7 кг;
  • TSC1300
    типоразмер 6U,
    габариты 262,5 х 164 х 70,8 мм,
    вес 2 кг;
  • TSC1500
    типоразмер 6U,
    габариты 262,5 х 166,5 х 121,5 мм,
    вес 3 кг;
  • TSC2000
    типоразмер 3U,
    габариты 129 х 165 х 50,8 мм,
    вес 0,9 кг;
  • TSC3000
    типоразмер 3U,
    габариты 129 х165х70,8 мм,
    вес 1 кг;
  • TSC5000
    типоразмер 3U
    габариты 129х166,5х106,3 мм,
    вес 1,7 кг;
  • TSC600/TSC6000
    типоразмер 3U,
    габариты 129х166,5х180,6 мм,
    вес 2,6/3,5 кг;
  • TSC2600
    типоразмер 3U,
    габариты 129 х 226 х 180,6 мм,
    вес 4,5 кг;
  • TSC3500
    типоразмер 6U,
    габариты 262,5 х 226 х 106,3 мм,
    вес 5 кг;
  • TSC3700
    типоразмер 6U,
    габариты 262,5 х 226 х 142 мм,
    вес 6,5 кг;
  • TSC3600
    типоразмер 6U,
    габариты 262,5 х 226 х 213 мм,
    вес 10 кг;
  • TSC3800
    типоразмер 6U,
    габариты 262,5 х 226 х 284 мм,
    вес 12 кг.

По электромагнитной совместимости преобразователи удовлетворяют требованиям стандартов EN 55022 class B, FCC part 15, level B, EN61000-6-2:2005, по безопасности — IEC/EN60950-1, UL 60950-1, RoHS directive 2011/65/EU. Компания предоставляет возможность индивидуального заказа преобразователей, срок заводской гарантии 3 года.

Основные характеристики и особенности серии:

  • низкая нестабильность выходного напряжения: при изменении входного напряжения в пределах ±10% — ±0,1%, при изменениях тока в нагрузке от 10% до 90% от номинала — ±0,2%;
  • низкий уровень пульсаций и шумов — менее 1% от Uвых (в полосе частот до 20 МГц);
  • переходная характеристика по уровню ±1% — 2 мс, динамическая характеристика 6%;
  • схема защиты от коротких замыканий с автоматическим восстановлением;
  • входной ток холостого хода — 3% от тока полной нагрузки;
  • рабочий диапазон температур окружающей среды -20…+75° С, по заказу -40…+75° С;
  • ограничение допустимого выходного тока (Derating) — 3,5 %/К при температуре более 55° С;
  • КПД — 85%, для исполнений с Uвых=5 В — 70%;
  • частота переключения 33 кГц;
  • расчётная наработка на отказ — более 100000 ч (по стандарту MIL HDBK-217F при Т=40° С);
  • соединители: вилка H15 (DIN 41612), для моделей с током свыше 50 А винтовые терминалы;
  • интерфейсы управления RS232, IEEE488.

Стандартные опции:

Модули оснащаются рядом стандартных опций по индикации, управлению, режимам и конструктивным исполнениям.

  • Опция «р» (Power fail) — индикация входного напряжения.
  • Опция «d» (DC-ok) — индикация пониженного входного напряжения при ещё нормальном выходном напряжении.
  • Опция «r» (Relay output) — логический выход включения сигнала тревоги (по комбинации сигналов опций «р» и «d».
  • Опция «е» — возможность регулировки (подстройки) выходного напряжения (управляющее напряжение 0-10 В).
  • Опция «cs» — обеспечивается возможность параллельной работы однотипных источников питания.
  • Опция «i» — установка в первичную цепь термистора для ограничения пускового тока.
  • Конструктивные опции: «w» — крепление на стену, «cha» — крепление на шасси, «din» — крепление на DIN-рейку, «ms» — конструкция повышенной прочности для жёстких условий эксплуатации, «с» — расширенный диапазон рабочих температур (-40…+75° С).

По требованию заказчика компания оснащает источники питания данной серии дополнительными опциями (при согласовании с заказчиком технической спецификации).

Серия TSC 19” мощностью от 150 Вт до 22 кВт

В состав серии TSC 19” входят AC/DC-источники питания, устройства управления зарядом аккумуляторных батарей и DC/DC-преобразователи мощностью от 5 кВт до 22 кВт, предназначенные для подключения к сетям постоянного тока напряжением 10-800 В или переменного тока напряжением 115/230 В (1 фаза), 200/400/480 В (3 фазы). Конструктивно преобразователи и источники питания выполнены в виде стандартных модулей высотой 4U, 6U/9U и самые мощные, 22 кВт, высотой 8U, для установки в стойки (шкафы) типоразмера 19“. Для преобразователей мощностью от 5 до 22 кВт предусмотрена принудительная вентиляция.

Диапазоны входных постоянных напряжений преобразователей: 10-16 В, 18-36 В, 36-75 В, 80-160 В, 160-320 В, 320-640 В, 450-800 В, модули могут обеспечивать выходные напряжения до 400 В, выходные токи до 400 А. Основные особенности преобразователей:

  • прочная конструкция;
  • ограничение пускового тока;
  • защита от неправильной полярности входного напряжения;
  • возможность параллельной работы с аналогичными модулями;
  • дистанционное включение/выключение;
  • возможность регулировки выходного напряжения;
  • мониторинг (индикация) входного и выходного напряжения;
  • управление через интерфейсы RS232, IEEE488;
  • возможность монтажа на стены (переборки);
  • исполнение с повышенной механической прочностью;
  • тропическое исполнение (защита от конденсата).

Источники питания серии отличаются высоким КПД (до 90%). Диапазон рабочих температур -20…+75° С (опционно -40…+75° С), снижение параметров 2,5%/°С при температуре окружающей среды более 55° С. Нестабильность выходного напряжения не превышает 0,2% при изменении нагрузки в пределах 10-90%.

Модули обладают следующими видами защиты:

  • защита от короткого замыкания;
  • защита от перенапряжения на входе;
  • блокировка при пониженном входном напряжении.

Инверторы и преобразователи частоты серии TSD для систем бесперебойного питания, 200 ВА – 30 кВА

В данную серию входят модульные инверторы и преобразователи частоты AC/AC – для однофазных и трёхфазных сетей, предназначенные для установки в стандартные секционные 19-дюймовые стойки (рис. 5). Модули выпускаются в однофазных исполнениях мощностью 0,6 кВА-10 кВА и трёхфазных исполнениях (0,6-30 кВА), предназначены для генерации переменного напряжения с частотами 50/60/400 Гц или с регулируемыми частотами в пределах 47-400 Гц по запросам заказчиков.

Устройства могут быть использованы в различных промышленных приложениях, для питания бортовой аппаратуры судов, в мощных бесперебойных источниках питания и в ряде других приложений, в том числе специального назначения.

Входное напряжение: 20-640 В постоянного тока, 115/230 В (однофазное), 200/400/480 В (трёхфазное) переменного тока, выходные напряжения 115/230 В (однофазное), 200/400/480 В (трёхфазное). Основные технические параметры и опции модулей в основном такие же, как у рассмотренных выше DC/DC- и AC/DC-преобразователей, к отличающимся особенностям относятся:

синусоидальное выходное напряжение;

  • автоматический выбор номинала входного напряжения (115/230 В);
  • коррекция коэффициента мощности для однофазных исполнений;
  • необходимая коммутация (Static Switch) для подключения батареи при построении бесперебойной системы питания мощностью от 800 ВА до 10 кВА;
  • коэффициент мощности (Power Factor) — cos φболее 0,7;
  • пик-фактор (Crest Factor) примерно 3;
  • нестабильность выходного напряжения не более 3% при изменениях нагрузки в пределах 10-90% на частоте 50/60 Гц, 5% (400 Гц);
  • нелинейные искажения 3% (типовое значение на частоте 50/60 Гц), 5% (400 Гц);
  • КПД 75-90%;
  • напряжение изоляции вход/выход 3000 В.

Модули обладают следующими видами защиты:

  • защита от короткого замыкания;
  • защита от неправильной полярности питания;
  • защита от повышенной влажности и температуры.

Мощные источники питания, инверторы и преобразователи частоты, выпускаемые компанией, удовлетворяют требованиям ряда международных стандартов и директив:

  • директива на низковольтное оборудование LVD 2006/95/EC;
  • директива EMC/2004/108/EC по требованиям к электромагнитной совместимости;
  • стандарты ISO9001, ISO14001;
  • директива по ограничению содержания опасных веществ 2011/65/EU (RoHS);
  • IPC/JEDEC J-STD-020.1, IPC/JEDEC J-STD-033B — стандарты, в соответствии с которыми регламентируются уровни чувствительности электронных компонентов и изделий к влажности (MSL).

Высоконадежные модели отвечают современным требованиям рынка и являются оптимальным решением для применений большой мощности в таких отраслях как электроэнергетика, нефтегазовая и тяжелая промышленность, телекоммуникации и передача данных, в железнодорожном транспорте и в промышленной автоматизации. Стандартные формфакторы, большой выбор дополнительных опций и заказные разработки позволяют заказчику создавать гибкие решения для своих задач.

Техническая документация доступна на сайте производителя. Компания PT Electronics является официальным дистрибьютором продукции компании Traco Electronic AG. Компания обладает складом, осуществляет техническую поддержку и консультации по применению источников питания, предоставляет бесплатные образцы.

Автор статьи:
Юрий Петропавловский
Опубликовано в журнале «Вестник Электроники», №2 2014

Источник



Можно ли использовать зарядное устройство с большей выходной силой тока, чем необходимо для устройства?

Я только что купил портативный аккумулятор, но портативный аккумулятор не поставляется с адаптером для дома тока; он поставляется только с USB-кабелем, поэтому я могу заряжать его с помощью своего ноутбука. Мой мобильный телефон поставлялся с зарядным устройством, и я хочу знать, безопасно ли использовать это зарядное устройство с аккумулятором без проблем, хотя выходной ток имеет большую силу тока. Это технические характеристики:

Вход батареи: 5В, 1А
Выход зарядного устройства: 5В, 2А

Будет ли выход давать только количество, которое запрашивает вход, или будет перегревать вход, потому что он не может обработать весь ток, который он получает?

Да , зарядить устройство зарядным устройством, заряд которого больше, чем необходимо, абсолютно безопасно.

Закон Ома говорит нам о связи между током, напряжением и сопротивлением:

Поскольку напряжение поддерживается постоянным (5 В), единственным фактором, который определяет потребление тока, является нагрузка (еще один термин для сопротивления), которую устройство помещает на зарядное устройство. Таким образом, устройство будет потреблять столько тока, сколько ему нужно, и не более.

Исходя из личного опыта, у меня не было проблем с зарядкой телефона (который потребляет всего 700 мА) с помощью зарядного устройства Kindle (850 мА) или зарядного устройства для iPad (2,1 А).

Расширяя ответ на постукивание. Эти зарядные устройства работают так же, как и внутреннее питание настольного компьютера.

Когда вы купите, например, игровой компьютер, вы заметите, что существуют варианты блока питания (PSU), которые выходят далеко за рамки требований, которые вы когда-либо попадете внутрь корпуса. Очевидно, что если бы блок питания контролировал, сколько энергии потребляет компонент, вы бы довольно быстро прожарили большинство систем. Очевидно, что это делают компоненты, которые требуют питания.

Полезно использовать более высокие блоки питания, если, например, вы решите обновить свои компоненты позднее. Если ваши новые фигуры требуют больше энергии, чем их коллеги, они просто потребуют больше.

Я не думаю, что что-нибудь, что я бегу в эти дни, имеет правильный источник питания Мой телевизор работает от зарядного устройства для ноутбука .

Выбор правильного зарядного устройства для правильного устройства увеличивает скорость зарядки, увеличивает срок службы устройства и снижает риск ожога. Всегда существует риск ожога, но его можно свести к минимуму многими методами.

  • Закон Ома, V = R I где V напряжение, R сопротивление и I ток. Выберите кабель с большей / той же зарядной емкостью ( I ), чем у телефона.

Общее резюме

Упражнения, где пытаются ответить на вопросительные знаки

  • риск ожога — получение большего тока от кабеля, который он поддерживает, всегда риск ожога
    • почувствуйте зарядное устройство своей рукой; если очень жарко, откажитесь; произойдет перегрев; Поскольку большинство зарядных устройств не имеют защиты, кроме покрытия, продавец не может рекомендовать комбинации с риском ожога

[новая таблица, где устройство имеет Snapdragon 810 или 820, поскольку в динамических конфигурациях ситуация будет немного отличаться]

Практическая таблица, где пытаются ответить на вопросительные знаки

Для большинства смартфонов с зарядкой от USB напряжение батареи не имеет значения. Зарядная цепь USB часто устанавливается на 5 В 0,5 А

источники

Телефоны в примерах: Oneplus 2, .
Инструменты для изучения вольт и ампер, которые заряжает ваш телефон: Ampere

Этот закон Ома является неправильным приложением для заряженной батареи, батарея является не резистивным устройством, а емкостным устройством, поэтому, если зарядное устройство подает 2 А, батарея телефона примет ток зарядки 2 А как закон Ома: P = IxV , V = 5V постоянная, поэтому ток я буду менять, если мощность зарядного устройства выше, чем требуется устройству. Утверждение «Таким образом, устройство будет потреблять только столько тока, сколько ему нужно, и не более». В этом случае неверно, хотя утверждение «Если судить по личному опыту, у меня не было проблем с зарядкой телефона (который только потребляет»). 700 мА) с зарядным устройством Kindle (850 мА) или зарядным устройством для iPad (2,1 А). » Ничего страшного из его опыта, с его устройством ничего не происходит, потому что при зарядке с большим количеством зарядного устройства выделяется больше тепла, а время также сокращается,

В случае использования мобильного зарядного устройства с более высоким током, чем рекомендуется, мобильный телефон будет заряжаться, но через несколько дней мобильный аккумулятор раздувается.

Источник

Adblock
detector