Однофазные электродвигатели. Виды, принцип действия, схемы включения однофазных электродвигателей.
Однофазные электродвигатели
Зачастую основное внимание уделяется изучению трёхфазных электродвигателей, частично в связи с тем, что трёхфазные электродвигатели применяются чаще, чем однофазные. Однофазные электродвигатели имеют тот же принцип действия, что и трёхфазные электродвигатели, только с более низкими пусковыми моментами. Они подразделяются по типам в зависимости от способа пуска.
Стандартный однофазный статор имеет две обмотки, расположенные под углом 90° по отношению друг к другу. Одна из них считается главной обмоткой, другая — вспомогательной, или пусковой. В соответствии с количеством полюсов каждая обмотка может делиться не несколько секций.
На рисунке приведен пример двухполюсной однофазной обмотки с четырьмя секциями в главной обмотке и двумя секциями во вспомогательной.
Следует помнить, что использование однофазного электродвигателя — это всегда, своего рода, компромисс. Конструкция того или иного двигателя зависит, прежде всего, от поставленной задачи. Это значит, что все электродвигатели разрабатываются в соответствии с тем, что наиболее важно в каждом конкретном случае: например, КПД, вращающий момент, рабочий цикл и т.д. Из-за пульсирующего поля однофазные электродвигатели CSIR и RSIR могут иметь более высокий уровень шума по сравнению с двухфазными электродвигателями PSC и CSCR, которые работают намного тише, так как в них используется пусковой конденсатор. Конденсатор, через который производится пуск электродвигателя, способствует его плавной работе.
Основные типы однофазных индукционных электродвигателей
Бытовая техника и приборы низкой мощности работают от однофазного переменного тока, кроме того, не везде может быть обеспечено трёхфазное электропитание. Поэтому однофазные электродвигатели переменного тока получили широкое распространение, особенно в США. Очень часто электродвигателям переменного тока отдают предпочтение, так как их отличает прочная конструкция, низкая стоимость, к тому же они не требуют технического обслуживания.
Как видно из названия, однофазный индукционный электродвигатель работает по принципу индукции; тот же принцип действует и для трёхфазных электродвигателей. Однако между ними есть различия: однофазные электродвигатели, как правило, работают при переменном токе и напряжении 110 -240 В, поле статора этих двигателей не вращается. Вместо этого каждый раз при скачке синусоидального напряжения от отрицательного к положительному меняются полюса.
В однофазных электродвигателях поле статора постоянно выравнивается в одном направлении, а полюса меняют своё положение один раз в каждом цикле. Это означает, что однофазный индукционный электродвигатель не может быть пущен самостоятельно.
Теоретически, однофазный электродвигатель можно было бы запустить при помощи механического вращения двигателя с последующим немедленным подключением питания. Однако на практике пуск всех электродвигателей осуществляется автоматически.
Выделяют четыре основных типа электродвигателей:
• индукционный двигатель с пуском через конденсатор / работа через обмотку (индуктивность) (CSIR),
• индукционный двигатель с пуском через конденсатор/работа через конденсатор (CSCR),
• индукционный двигатель с реостатным пуском (RSIR) и
• двигатель с постоянным разделением емкости (PSC).
На приведённом ниже рисунке показаны типичные кривые соотношения вращающий момент/частота вращения для четырёх основных типов однофазных электродвигателей переменного тока.
Однофазный электродвигатель с пуском через конденсатор/работа через обмотку (CSIR)
Индукционные двигатели с пуском через конденсатор, которые также известны как электродвигатели CSIR, составляют самую большую группу однофазных электродвигателей.
Двигатели CSIR представлены несколькими типоразмерами: от самых маломощных до 1,1 кВт. В электродвигателях CSIR конденсатор последовательно соединён с пусковой обмоткой. Конденсатор вызывает некоторое отставание между током в пусковой обмотке и в главной обмотке.
Это способствует задержке намагничивания пусковой обмотки, что приводит к появлению вращающегося поля, которое влияет на возникновение вращающего момента. После того как электродвигатель наберёт скорость и приблизится к рабочей частоте вращения, открывается пускатель. Далее электродвигатель будет работать в обычном для индукционного электродвигателя режиме. Пускатель может быть центробежным или электронным.
Двигатели CSIR имеют относительно высокий пусковой момент, в диапазоне от 50 до 250 процентов от вращающего момента при полной нагрузке. Поэтому из всех однофазных электродвигателей эти двигатели лучше всего подходят для случаев, когда пусковые нагрузки велики, например для конвейеров, воздушных компрессоров и холодильных компрессоров.
Однофазный электродвигатель с пуском через конденсатор/ работа через конденсатор (CSCR)
Этот тип двигателей, которые коротко называются «электродвигатели CSCR», сочетает в себе лучшие свойства индукционного двигателя с пуском через конденсатор и двигателя с постоянно подключённым конденсатором. Несмотря на то, что из-за своей конструкции эти двигатели несколько дороже других однофазных электродвигателей, они остаются наилучшим вариантом для применения в сложных условиях. Пусковой конденсатор электродвигателя CSCR последовательно соединён с пусковой обмоткой, как и в электродвигателе с пуском через конденсатор. Это обеспечивает высокий пусковой момент.
Электродвигатели CSCR также имеют сходство с двигателями с постоянным разделением емкости (PSC), так как у них пуск тоже осуществляется через конденсатор, который последовательно соединён с пусковой обмоткой, если пусковой конденсатор отключен от сети. Это означает, что двигатель справляется с максимальной нагрузкой или перегрузкой.
Электродвигатели CSCR могут использоваться для работы с низким током полной нагрузки и при более высоком КПД. Это даёт некоторые преимущества, в том числе обеспечивает работу двигателя с меньшими скачками температуры, в сравнении с другими подобными однофазными электродвигателями.
Электродвигатели CSCR — самые мощные однофазные электродвигатели, которые могут использоваться в сложных условиях, например, в насосах для перекачивания воды под высоким давлением и в вакуумных насосах, а также в других высокомоментных процессах. Выходная мощность таких электродвигателей лежит в диапазоне от 1,1 до 11 кВт.
Однофазный электродвигатель с пуском через сопротивление/работа через обмотку (индуктивность) (RSIR)
Данный тип двигателей ещё известен как «электродвигатели с расщеплённой фазой». Они, как правило, дешевле однофазных электродвигателей других типов, используемых в промышленности, но у них также есть некоторые ограничения по производительности.
Пусковое устройство электродвигателей RSIR включает в себя две отдельные обмотки статора. Одна из них используется исключительно для пуска, диаметр проволоки данной обмотки меньше, а электрическое сопротивление — выше, чем у главных обмоток. Это вызывает отставание вращающегося поля, что, в свою очередь, приводит в движение двигатель. Центробежный или электронный пускатель отсоединяет пусковую обмотку, когда частота вращения двигателя достигает, приблизительно, 75% от номинальной величины. После этого электродвигатель продолжит работу в соответствии со стандартными принципами действия индукционного электродвигателя.
Как уже говорилось раньше, для электродвигателей RSIR есть некоторые ограничения. У них низкие пусковые моменты, часто в диапазоне от 50 до 150 процентов от номинальной нагрузки. Кроме того, электродвигатель создаёт высокие пусковые токи, приблизительно от 700 до 1000% от номинального тока. В результате продолжительное время пуска будет вызывать перегрев и разрушение пусковой обмотки. Это означает, что электродвигатели данного типа нельзя использовать там, где необходимы большие пусковые моменты.
Электродвигатели RSIR рассчитаны на узкий диапазон напряжения питания, что, естественно, ограничивает области их применения. Их максимальные вращающие моменты варьируются в пределах от 100 до 250% от расчетной величины. Необходимо также отметить, что дополнительной трудностью является установка тепловой защиты, так как довольно сложно найти защитное устройство, которое срабатывало бы достаточно быстро, чтобы не допустить прогорания пусковой обмотки. Электродвигатели RSIR подходят для использования в небольших приборах для рубки и перемалывания, вентиляторах, а также для применения в других областях, в которых допускается низкий пусковой момент и требуемая выходная мощность на валу от 0,06 кВт до 0,25 кВт. Они не используются там, где должны быть высокие вращающие моменты или продолжительные циклы.
Однофазный электродвигатель с постоянным разделение емкости (PSC)
Как видно из названия, двигатели с постоянным разделением емкости (PSC) оснащены конденсатором, который во время работы постоянно включен и последовательно соединён с пусковой обмоткой. Это значит, что эти двигатели не имеют пускателя или конденсатора, который используется только для пуска. Таким образом, пусковая обмотка становится вспомогательной обмоткой, когда электродвигатель достигает рабочей частоты вращения.
Конструкция электродвигателей PSC такова, что они не могут обеспечить такой же пусковой момент, как электродвигатели с пусковыми конденсаторами. Их пусковые моменты достаточно низкие: 30-90% от номинальной нагрузки, поэтому они не используются в системах с большой пусковой нагрузкой. Это компенсируется за счёт низких пусковых токов — обычно меньше 200% от номинального тока нагрузки, — что делает их наиболее подходящими двигателями для областей применения с продолжительным рабочим циклом.
Двигатели с постоянным разделением емкости имеют ряд преимуществ. Рабочие параметры и частоту вращения таких двигателей можно подбирать в соответствии с поставленными задачами, к тому же они могут быть изготовлены для оптимального КПД и высокого коэффициента мощности при номинальной нагрузке. Так как они не требуют специального устройства пуска, их можно легко реверсировать (изменить направление вращения на обратное). В дополнение ко всему вышесказанному, они являются самыми надёжными из всех однофазных электродвигателей. Вот почему Grundfos использует однофазные электродвигатели PSC в стандартном исполнении для всех областей применения с мощностями до 2,2 кВт (2-полюсные) или 1,5 кВт (4-полюсные).
Двигатели с постоянным разделением емкости могут использоваться для выполнения целого ряда различных задач в зависимости от их конструкции. Типичным примером являются низкоинерционные нагрузки, например вентиляторы и насосы.
Двухпроводные однофазные электродвигатели
Двухпроводные однофазные электродвигатели имеют две главные обмотки, пусковую обмотку и рабочий конденсатор. Они широко используются в США с однофазными источниками питания: 1 ½ 115 В / 60 Гц или 1 ½ 230 В / 60 Гц. При правильном подключении данный тип электродвигателей можно использовать для обоих видов электропитания.
Ограничения однофазных электродвигателей
В отличие от трёхфазных для однофазных электродвигателей существуют некоторые ограничения. Однофазные электродвигатели ни в коем случае не должны работать в режиме холостого хода, так как при малых нагрузках они сильно нагреваются, также рекомендуется эксплуатировать двигатель при нагрузке меньшей 25% от полной нагрузки.
Электродвигатели PSC и CSCR имеют симметричное/ круговое вращающееся поле в одной точке приложения нагрузки; это значит, что во всех остальных точках приложения нагрузки вращающееся поле асимметричное/эллиптическое. Когда электродвигатель работает с асимметричным вращающимся полем, сила тока в одной или обеих обмотках может превышать силу тока в сети. Такие избыточные токи вызывают потери, в связи с этим одна или обе обмотки (что чаще происходит при полном отсутствии нагрузки) нагреваются, даже если ток в сети относительно небольшой. Смотрите примеры.
О напряжении в однофазных электродвигателях
Важно помнить о том, что напряжение на пусковой обмотке электродвигателя может быть выше сетевого напряжения питания электродвигателя. Это относится и к симметричному режиму работы. Смотрите пример.
Изменение напряжения питания
Нужно отметить, что однофазные электродвигатели обычно не используются для больших интервалов напряжения, в отличие от трёхфазных электродвигателей. В связи с этим может возникнуть потребность в двигателях, которые могут работать с другими видами напряжения. Для этого необходимо внести некоторые конструкционные изменения, например, нужна дополнительная обмотка и конденсаторы различной ёмкости. Теоретически, ёмкость конденсатора для различного сетевого напряжения (с одной и той же частотой) должна быть равна квадрату отношения напряжений:
Таким образом, в электродвигателе, рассчитанном на питание от сети в 230 В, используется конденсатор 25µФ/400 В, для модели электродвигателя на 115 В необходим конденсатор ёмкостью 100µФ с маркировкой более низкого напряжения — например 200 В.
Иногда выбирают конденсаторы меньшей ёмкости, например 60µФ. Они дешевле и занимают меньше места. В таких случаях обмотка должна подходить для определённого конденсатора. Нужно учитывать, что производительность электродвигателя при этом будет меньше, чем с конденсатором ёмкостью 100µФ — например, пусковой момент будет ниже.
Заключение
Однофазные электродвигатели работают по тому же принципу, что и трёхфазные. Однако у них более низкие пусковые моменты и значения напряжения питания (110-240В).
Однофазные электродвигатели не должны работать в режиме холостого хода, многие из них не должны эксплуатироваться при нагрузке меньше 25 % от максимальной, так как это вызывает повышение температуры внутри электродвигателя, что может привести к его поломке.
Источник
Принцип работы асинхронного двигателя
Асинхронный (индукционный) двигатель (АД) – устройство, преобразовывающий электрическую энергию в механическую. «Асинхронный» означает разновременный. Электродвигатели асинхронные питаются от сети переменного тока.
Особенности асинхронных двигателей
Применение
Такие электродвигатели (частотные преобразователи) не используются в сетях постоянного тока. Но они имеют широкое применение во всех отраслях народного хозяйства. По статистике, до 70% электроэнергии, которая преобразуется в механическую энергию поступательного либо вращательного движения, потребляется именно индукционными электродвигателями.
Асинхронная машина не подключается к сети постоянного тока.
Асинхронные частотные преобразователи не требуют сложного производства и просты по своей конструкции, но в тоже время очень надежны. Такие двигатели могут работать от однофазной и трехфазной сети, используя разные частоты. Преобразователи не подходят для сетей постоянного тока. Для их управления применяют сравнительно несложные схемы.
При выборе асинхронного двигателя зачастую возникают проблемы с определением:
- его мощности;
- характеристик и приемлемой схемы, с помощью которой осуществляется управление электродвигателем;
- расчетом мощности конденсаторов, которые нужны, чтобы преобразователь работал от одной фазы;
- марки и сечения провода;
- устройств защиты и управления, которыми оснащен преобразователь.
Чтобы во всем этом разобраться, необходимо знать устройство и особенности работы асинхронного агрегата. Это поможет правильно подобрать преобразователь для решения конкретной задачи.
Индукционный агрегат свое название получил благодаря тому, что магнитное поле вращается с более высокой скоростью, чем сам ротор, поэтому последний всегда пытается «догнать» скорость вращения поля.
Устройство АД
Ротор и статор – главные элементы индукционного двигателя.
Схема устройства асинхронного агрегата
Схема: вал (1), подшипники (2,6), лапы (4), крыльчатка (7), статор (10), коробка выводов (11), ротор (9), кожух вентилятора (5), щиты подшипниковые (3,8).
На рисунке представлено устройство типового агрегата. Статор АД имеет форму цилиндра. Внутренняя часть имеет размеры, обеспечивающие зазор между ротором и статором. В пазах сердечника расположены обмотки. Их оси для нормальной работы расположены относительно одна другой под углом 1200. Между собой концы обмоток собираются с помощью схемы «звезда» либо «треугольник», но это зависит непосредственно от напряжения. Ротор может быть фазным либо короткозамкнутым.
Ротор вращается по ходу движения магнитного поля.
Трехфазную обмотку устанавливают на фазный ротор, она напоминает обмотку статора. С одной стороны концы обмотки фазного ротора обычно соединяются в «звезду», а свободные концы подсоединяются к контактным кольцам. Для включения в цепь обмотки фазного ротора дополнительного сопротивления используются щетки, подключенные к кольцам. Такая конструкция не предназначена для работы в цепях постоянного тока, так как необходимое вращение обеспечивает изменение фазы.
Короткозамкнутый ротор – это сердечник, который сделан из стальных листов. Пазы в короткозамкнутом роторе заполняются расплавленным алюминием, в результате чего получаются стержни, замыкаемые накоротко торцевыми кольцами.
Таким короткозамкнутым ротором создаются условия для минимального электрического сопротивления. Эта конструкция получила название «беличья клетка» или «беличье колесо».
Конструкция «беличья клетка»
В короткозамкнутом роторе повышенной мощности пазы заполняются медью или латунью. Беличье колесо – это и есть короткозамкнутая обмотка ротора.
В зависимости от подключаемой фазы индукционный агрегат подразделяется на однофазный и трехфазный. С помощью учета данного параметра различают принцип действия асинхронного двигателя.
Однофазная индукционная машина
Чаще всего индукционный однофазный двигатель переменного тока устанавливается в бытовой технике, так как электроснабжение дома осуществляется от однофазной электросети. Преимуществом таких двигателей переменного тока является достаточно прочная конструкция и низкая стоимость, отсутствие сложных схем управления.
Они вполне подходят для длительной работы, так как не нуждаются в техническом обслуживании. Обычно однофазный двигатель малой мощности – до 0,5 кВт. Такие электродвигатели устанавливаются в стиральных машинах, компрессорах холодильников и другой бытовой технике, где ротором создается небольшая скорость вращения, сравнительно небольшой объем силы тока.
Схема работы однофазного двигателя малой мощности
В однофазных индукционных агрегатах на статоре установлено управление ротором от двух обмоток, которые сдвинуты одна от другой на 900 тока для образования пускового момента. Одна обмотка является пусковой, а вторая – рабочей.
Однофазные электродвигатели не подходят для сетей постоянного тока. Они характеризуются низкими энергопоказателями и малой перегрузочной способностью. Агрегаты функционируют в нормальном режиме, если не нарушен определенный диапазон частоты поля. После начала вращения устройство управления подключает рабочую обмотку. Это позволяет уменьшить потребление энергии.
В электрических приводах с обычным запуском устанавливаются, как правило, однофазные индукционные двигатели, имеющие экранированные полюса. В таком асинхронном электродвигателе в качестве вспомогательной фазы выступают короткозамкнутые витки, имеющие минимальные сопротивления, размещенные на выраженных полюсах статора.
Учитывая то, что пространственный угол, образованный витком и осями основной фазы, гораздо меньше 900, в таком электродвигателе есть эллиптическое поле. С помощью него создаются сравнительно небольшие силы, чем и объясняются невысокие рабочие и пусковые свойства индукционных электродвигателей, оснащенных экранированными полюсами с фазным включением.
Индукционные однофазные электродвигатели, имеющие короткозамкнутый ротор подразделяются на:
- с усиленным сопротивлением фазы пуска;
- агрегаты с короткозамкнутым ротором, оснащенные рабочим конденсатором;
- оснащенные фазным пусковым конденсатором;комбинированные с фазным управлением, короткозамкнутым ротором;
- комбинированные с фазным управлением, короткозамкнутым ротором;
- с экранированными полюсами.
Асинхронным однофазным машинам не рекомендуется работать на холостом ходу. Пренебрежение данным правилом приводит к сильному перегреву фазного двигателя.
Трехфазный двигатель
В трехфазной индукционной машине обмотка предназначена для образования вращающегося по кругу магнитного поля, которое проходит через короткозамкнутую обмотку ротора. Созданные с фазным управлением аппараты не применяются в цепях постоянного тока. При прохождении поля через проводники обмотки статора образуется электродвижущая сила, которая и вызывает прохождение переменного тока в обмотке, управляющей ротором, имеющим собственное магнитное поле. Данное магнитное поле при взаимодействии с фазным магнитным вращающимся полем статора вызывает вращение определенной частоты вслед за полями между ним и ротором.
Схема работы индукционного трехфазного агрегата
Данный принцип разработал академик из Франции Араго. Иными словами, если подковообразный магнит установить вблизи металлического диска свободно закрепленным на оси и вращать его с поддержанием определенной частоты оборотов, то металлический диск без дополнительного управления начнет движение за магнитом, однако скорость его вращения будет меньше, чем скорость движения магнита.
Данное явление обусловлено правилами электромагнитной индукции. Во время вращения около поверхности металлического диска полюсов магнита в контурах под полюсом образуется электродвижущая сила соответствующей частоты, и возникают токи, создающие магнитное поле металлического диска. Магнитное поле диска начинает взаимодействовать с полем полюсов вращающегося магнита, в результате чего диск «увлекается» своим магнитным полем.
Так и в асинхронном агрегате, в качестве металлического диска выступает короткозамкнутая обмотка ротора, а в качестве магнита – магнитопровод и обмотка статора.
Чтобы облегчить управление и запуск трехфазного электродвигателя при подключении к однофазной сети (переменного, а не постоянного тока), на момент пуска дополнительно устанавливается параллельно с рабочим и пусковой конденсатор. Им компенсируют отсутствие фазы и соответствующей частоты поля.
Запуск трехфазного двигателя
Двигатель в работе. Видео
О том, как работает асинхронный двигатель в режиме генератора, можно посмотреть в этом видео. Здесь представлены дельные советы по оптимизации процесса, в том числе и те, которые относятся к схемам управления фазным вращением.
Таким образом, зная особенности работы индукционной машины, с уверенностью можно сказать, что преобразование в механическую энергию электрической происходит в результате вращения вала электродвигателя (ротора).
Скорость вращения магнитного поля ротора и статора напрямую зависит от частоты питающей сети и количества пар полюсов. В случае, когда тип двигателя ограничивает число пар полюсов, то для управления изменением частоты питающей сети в больший диапазон используют частотный преобразователь.
Выше рассмотрены особенности управления фазным вращением. Также приведены отличия конструкции с короткозамкнутым минимальным ротором, который используется для уменьшения сопротивления. Следует помнить, что устройство некоторых агрегатов подразумевает возможность их применения только в цепях постоянного тока. Преобразователи с фазным вращением работают при питании переменным током.
Источник
Чем отличается синхронный двигатель от асинхронного
Автор: Николай Петрович
Электрический двигатель — это устройство, обеспечивающее преобразование электрической энергии в механическую. Конструктивно агрегат состоит из статора (фиксирован) и ротора (вращается). Первый создает магнитный поток, а второй крутится под действием электродвижущей силы (ЭДС).
Отличие – кратко простыми словами
Если говорить кратко и простыми словами, синхронный и асинхронный двигателя отличаются конструкцией роторов. Внешне понять какой перед вам электродвигатель практически невозможно, за исключением наличия дополнительных ребер охлаждения у асинхронных электродвигателей.
В устройстве, работающем на синхронном принципе, на роторе предусмотрена обмотка с независимой подачей напряжения.
У асинхронного мотора ток на ротор не подается, а формируется с помощью магнитного статорного поля. При этом статоры обоих агрегатов идентичны по конструкции и несут аналогичную функцию — создание магнитного поля.
Дополнительно в синхронном двигателе магнитные поля статора и ротора взаимодействуют друг с другом и имеют равную скорость.
У асинхронных агрегатов в роторных пазах имеются короткозамкнутые пластинки из металла или контактные кольца, обеспечивающие разность магнитного поля роторного и статорного механизма на величину скольжения.
Несмотря на видимую простоту, разобраться с этим вопросом сразу вряд ли получится, поэтому рассмотрим вопрос более подробно. Поговорим об особенностях и отличиях асинхронных и синхронных машин.
Синхронный двигатель (СД)
Синхронный двигатель — агрегат с индивидуальной конструкцией ротора и индуктором с постоянными магнитами. Отличается улучшенными характеристиками мощности, момента и инерции. Имеет ряд особенностей конструкции и принципе действия.
Устройство
Конструктивно состоит из двух элементов: ротора (вращается) и статора (фиксированный механизм). Роторный узел находится во внутренней части статора, но бывают конструкции, когда ротор расположен поверх статора.
В состав ротора входят постоянные магниты, отличающиеся повышенной коэрцитивной силой.
Конструктивно СД делятся на два типа по полюсам:
- Неявно выраженные. Отличаются одинаковой индуктивностью по поперечной и продольной оси.
- Явно выраженные. Поперечная и продольная индуктивность имеют разные параметры.
Конструктивно роторы бывают разными устройством и по конструкции.
В частности, магниты бывают:
- Наружной установки.
- Встроенные.
Статор условно состоит из двух компонентов:
- Кожух.
- Сердечник с проводами.
Обмотка статорного механизма бывает двух видов:
- Распределенная. Ее отличие состоит в количестве пазов на полюс и фазу. Оно составляет от двух и более.
- Сосредоточенная. В ней количество пазов на полюс и фазу всего одно, а сами пазы распределяются равномерно по поверхности статорной части. Пара катушек, формирующих обмотку, могут соединяться в параллель или последовательно. Минус подобных обмоток состоит в невозможности влияния на линию ЭДС.
Форма электродвижущей силы электрического синхронного мотора бывает в виде:
- Трапеции. Характерна для устройств с явно выраженным полюсом.
- Синусоиды. Формируется за счет скоса наконечников на полюсах.
Если говорить в целом, синхронный мотор состоит из следующих элементов:
- узел с подшипниками;
- сердечник;
- втулка;
- магниты;
- якорь с обмоткой;
- втулка;
- «тарелка» из стали.
Принцип работы
Сначала к обмоткам возбуждения подводится ток постоянно величины. Он создает магнитное поле в роторной части. Статор устройства содержит обмотку для создания магнитного поля.
Как только на статорную обмотку подается ток переменной величины, по закону Ампера создается крутящий момент, и ротор начинает вращаться с частотой, равной частоте тока в статорном узле. При этом оба параметра идентичны, поэтому и двигатель носит название синхронный.
Роторная ЭДС формируется, благодаря независимому источнику питания, что позволяет менять обороты и не привязываться к мощности подключенных потребителей.
С учетом особенностей работы синхронный электродвигатель не может запуститься самостоятельно при подключении к трехфазному источнику тока.
Сфера применения
Электродвигатель синхронного типа имеет широкую сферу применения, благодаря постоянству частоты вращения.
Эта особенность расширяет сферу его применения:
- энергетика: источники реактивной мощности для поддержания напряжения, сохранение устойчивости сети при аварийных просадках;
- машиностроение, к примеру, при изготовлении гильотинных ножниц с большими ударными нагрузками;
- прочие направления — вращение мощных компрессоров или вентиляторов, генераторы на электростанциях, обеспечение устойчивой работы насосного оборудования и т. д.
Преимущества и недостатки
После рассмотрения конструктивных особенностей, принципа работы и сферы применения СД подведем итог по положительным / отрицательным особенностям.
- Возможность работы при косинусе Фи равном единице (отношение полезной мощности к полной). Эта особенность улучшает косинус Фи сети. При работе с опережающим током синхронные машины генерируют реактивную мощность, которая поступает к асинхронным моторам и уменьшает потребление «реактива» от генераторов электрических станций.
- Высокий КПД, достигающий 97-98%.
- Повышенная надежность, объясняемая большим воздушным зазором.
- Доступность регулирования перегрузочных характеристик, благодаря изменению тока, подаваемого в ротор.
- Низкая чувствительность к изменению напряжения в сети.
- Более сложная конструкция и, соответственно, высокая стоимость изготовления.
- Трудности с пуском, ведь эля этого нужные специальные устройства: возбудитель, выпрямитель.
- Потребность в источнике постоянного тока.
- Применение только для механизмов, которым не нужно менять частоту вращения.
Пример СД2-85/37-6У3, 500кВт, 1000об/мин, 6000В.
СД2-85/37-6У3, 500кВт, 1000об/мин, 6000В
Асинхронный двигатель (АД)
Асинхронный (индукционный) электродвигатель, имеющий разную частоту вращения магнитного поля в статоре и скорости ротора. В зависимости от типа и настройки может работать в двигательном или генераторном режиме, режиме ХХ или электромагнитного тормоза.
Конструктивные особенности
Конструктивно асинхронные механизмы трудно отличить от синхронных. Они также состоят из двух основных узлов: статора и ротора. При этом роторный узел может быть фазным или короткозамкнутым. Но небольшие конструктивные отличия все-таки имеются.
Рассмотрим, из чего состоит асинхронный двигатель:
- сердечник;
- вентилятор с корпусом;
- подшипник;
- коробка с клеммами;
- тройная обмотка;
- контактные кольца.
С учетом сказанного одним из главных отличий является отсутствие обмоток на якоре (исключением являются фазные АД). Вместо обмотки в роторе находятся стержни, закороченные между собой.
Принцип действия
В асинхронном двигателе магнитное поле создается, благодаря току в статорной обмотке, находящейся на специальных пазах. На роторе, как отмечалось выше, обмоток нет, а вместо них накоротко объединенные стержни. Такая особенность характерна для короткозамкнутого роторного механизма.
Во втором типе ротора (фазном) на роторе предусмотрены обмотки, ток и сопротивление которых могут регулироваться реостатным узлом.
Простыми словами, принцип действия можно разложить на несколько составляющих:
- При подаче напряжения в статоре создается магнитное поле.
- В роторе появляется ток, взаимодействующий с ЭДС статора.
- Роторный механизм вращается в том же направлении, но с отставанием (скольжением) размером от 1 до 8 процентов.
Сфера применения
Асинхронные электромоторы пользуются большим спросом в быту, благодаря простоте конструкции и надежности в эксплуатации.
Они часто применяются в бытовой аппаратуре:
- стиральных машинках;
- вентиляторе;
- вытяжке;
- бетономешалках;
- газонокосилках и т. д.
Также применяются они и в производстве, где подключаются к 3-фазной сети.
К этой категории относятся следующие механизмы:
- компрессоры;
- вентиляция;
- насосы;
- задвижки автоматического типа;
- краны и лебедки;
- станки для обработки дерева и т. д.
Асинхронные машины применяются в электрическом транспорте и других сферах. Они нашли применение в башенных кранах, лифтах и т. д.
Пример Трехфазный АИР 315S2 660В 160кВт 3000об/мин.
Трехфазный АИР 315S2 660В 160кВт 3000об/мин
Преимущества и недостатки
Электродвигатель асинхронного тип имеет слабые и сильные места, о которых необходимо помнить.
- Простая конструкция, которая обусловлена трехфазной схемой подключения и простым принципом действия.
- Более низкая стоимость, по сравнению с синхронным аналогом.
- Возможность прямого пуска.
- Низкое потребление энергии, что делает двигатель более экономичным.
- Высокая степень надежности, благодаря упрощенной конструкции.
- Универсальность и возможность применения в сферах, где нет необходимости в поддержке частоты вращения, или имеет место схема управления с обратной связью.
- Возможность применения при подключении к одной фазе.
- Успешный самозапуск группы АД в случае потери и последующей подачи на них напряжения.
- Минимальные расходы на эксплуатацию. Все, что требуется — периодически чистить механизма от пыли и протягивать контактные соединения. При соблюдении требований производителей менять подшипники можно с периодичностью раз в 15-20 лет.
- Наличие эффекта скольжения, обеспечивающего отставание вращения ротора от частоты вращения поля внутри механизма.
- Потери на тепло. Асинхронные моторы имеют свойство перегреваться, особенно при большой нагрузке. По этой причине корпус изделия делают ребристым для увеличения площади охлаждения (у СД такое применяется не на всех моделях). Дополнительно может устанавливаться вентилятор для обдува поверхности.
- Напряжение только на 220 В и выше. Из-за конструктивных особенностей такие электродвигатели не производятся для рабочего напряжения меньше 220 В. В качестве замены часто применяются гидро- или пневмоприводы.
- Небольшой КПД в момент пуска и высокая реактивность. По этой причине мотор может перегреваться уже при пуске. Это ограничивает количество пусков в определенный временной промежуток.
- Синхронная частота вращения не может быть больше 3000 об/мин, ведь в ином случае требуется использование турбированного привода или повышающего редуктора.
- Трудности регулирования устройств, которые приводятся в движение «синхронниками».
- Повышенный пусковой ток — одна из главных проблем асинхронных моторов, имеющих мощность свыше 10 кВт. В момент пуска токовая нагрузка может превышать номинальную в шесть-восемь раз и длиться до 5-10 секунд. По этой причине для «асинхронников» не рекомендуется прямое подключение.
- При появлении КЗ возле шин с работающим двигателем появляется подпитка тока.
- Чувствительность к изменениям напряжения. При отклонении этого параметра более, чем на 5% показатели электродвигателя отклоняются от номинальных. В случае снижения напряжения уменьшается момент АД.
Сравнение синхронного и асинхронного двигателей
В завершение можно подвести итог, в чем главные отличия асинхронных (АД) и синхронных (СД) моторов.
Выделим базовые моменты:
- Ротору асинхронных моторов не требуется питание по току, а индукция на полюсах зависит от статорного магнитного поля.
- Обороты АД под нагрузкой отстают на 1-8% от скорости вращения поля статора. В СД количество оборотов одинаково.
- В «синхроннике» предусмотрена обмотка возбуждения.
- Конструктивно ротор СД представляет собой магнит: постоянный, электрический. У АД магнитное поле в роторном механизме наводится с помощью индукции.
- У синхронной машины нет пускового момента, поэтому для достижения синхронизации нужен асинхронный пуск.
- «Синхронники» применяются в случаях, когда необходимо обеспечить непрерывность производственного процесса и нет необходимости частого перезапуска. АД нужны там, где требуется большой пусковой момент и имеют место частые остановки.
- СД нуждается в дополнительном источнике тока.
- «Асинхронники» медленнее изнашиваются, ведь в их конструкции нет контактных колец со щетками.
- Для АД, как правило, характерно не круглое количество оборотов, а для СД — округленное.
Про реактивную мощность
Синхронные электродвигатели генерируют и одновременно потребляют реактивную мощность. Особенности и параметры «реактива» зависит от тока в возбуждающей обмотке. При полной нагрузке косинус Фи равен 1. В таком режим СД не потребляет «реактив» из сети, а ток в статорной обмотке минимален.
Здесь важно понимать, что реактивная мощность ухудшает параметры энергосистемы. Большой параметр неактивных токов приводит к повышению расхода топлива, увеличению потерь и снижению напряжения.
Кроме того, «реактив» грузит линии передач электроэнергии, что ведет к необходимости увеличения сечения кабелей и проводов, а, соответственно, повышению капитальных расходов.
Сегодня одна из главных задач энергетиков — компенсация реактивной мощности. К основным ее потребителям относят АД, потребляющие 40% «реактива», электрические печи, преобразователи, ЛЭП и силовые трансформаторы.
Какой лучше
При сравнении асинхронного и синхронного электродвигателей трудно ответить, какой лучше. По конструкции и надежности выигрывает АД, который при умеренной нагрузке имеет более продолжительный срок службы. У СД щетки быстро изнашиваются, что требует их замены.
В остальном это два схожих по конструкции, но отличающихся по принципу действия механизма, имеющих индивидуальные сферы применения.
Источник
Как Тесла изменит мир (7/10)
Часть 3: История Теслы
Кристи Николсон вспоминает свою первую встречу с Илоном Маском на одной из вечеринок в 1989 году.
«Кажется, со второго предложения он заявил, что очень много раздумывает об электрических автомобилях», – сказала Кристи. «А потом он повернулся ко мне и спросил, думаю ли я тоже об электромашинах?»
В 1989 году электрокары были достаточно странным предметом для размышлений. Чтобы понять причины, по которым Маск так был одержим мыслями об электромашинах, давайте сначала попытаемся разобраться, что вообще такое электромобили и как они работают.
В настоящее время достаточно много типичных современных машин, которые считаются более экологически чистыми по сравнению с их бензиновыми аналогами – гибридные машины, заряжаемые гибридные машины, электрические машины (или электромобили, ЭМ). Также сейчас часто обсуждается другой вид машин – автомобили на водородном топливе. Общей чертой перечисленных выше автомобилей является наличие электродвигателя.
Существует два вида электромоторов – индукционный двигатель переменного тока и вентильный двигатель постоянного тока. Ввиду того, что читающие данные строки вряд ли уже смакуют губы в предвкушении насладиться ликбезом длиной на три абзаца о различиях, давайте для простоты считать их примерно одинаковыми.
Электродвигатель – это своего рода сосиска в тесте, где электричество подаётся на внешнюю неподвижную мучную часть (статор), заставляющее сосиску (ротор) крутиться. Ротор соединён с осью, которая и вращает колёса. Как-то вот так: 29
Как работает индукционный мотор переменного тока
Одним из наиболее типичных электродвигателей является индукционный мотор переменного тока (именно такие установлены в машинах Тесла). Индукционным он называется, т.к. отсутствует физический контакт между ротором и статором – электричество в статоре создаёт вращающееся магнитное поле, которое проникает в ротор посредством электрической индукции и вызывает его вращение.
Статор генерирует вращающееся магнитное поле посылая электричество через трёх-фазовую систему: 30
Всего имеется три различных провода, каждый с чередующейся (переменной) тягой – просто посмотрите на стрелку одного цвета и вы увидите, что она бегает туда-сюда. Но эти три провода расположены таким образом, что направление тяги статора постепенно меняется по кругу. При добавлении ротора в такое магнитное поле заставляет его вращаться:
Следующие типы машин используют электродвигатель.
Гибридные машины (гибриды, гибридные электрические автомобили) несут на своём борту одновременно и электродвигатель, и бензиновый двигатель внутреннего сгорания. Гибриды не втыкают в розетку – горящий бензин заряжает их батарею. Также батарея заряжается с помощью электромотора при торможении автомобиля. Как правило, джоули кинетической энергии машины во время движения оказываются потерянными при торможении и уходят в виде тепла. При регенеративном торможении часть этой кинетической энергии посылается обратно в аккумулятор, чтобы использоваться позднее. Электрический компонент гибридной машины замещает часть потребности в сжигании бензина, увеличивая расстояние, которое способна проехать машина при том же расходе топлива. Снижаются выхлопы, уменьшаются расходы на бензин. Гибриды – огромный технологический шаг по сравнению с обыкновенными автомобилями.
Но гибриды всё равно не ахти. Почему? Они только частично улучшают ситуацию с выхлопами, но не решают её – им же всё равно необходим бензин для движения. Мир, где люди на 100% передвигаются с помощью Приусов, всё равно остаётся миром в 100%-ой зависимости от нефти.
Втыкаемые в розетку гибридные машины слегка получше обыкновенных гибридов. Подобные машины (Шеви Вольт, Хонда Аккорд, Форд Фьюжн Энерджи) позволяют подзаряжать батарею автомобиля дома и, как правило, способны проехать около 16-64 км на заряде батареи, прежде чем начнётся потребление бензина. Обычно этого оказывается достаточно для большинства людей с их ежедневными потребностями – иными словами, водители могут обходиться без нужды заправляться бензином длительное время.
Но если мы подобрались так близко с электромоторами и батареями – почему же не пойти до самого конца?
Водородные машины являются полностью электрическими, но они не используют батарею. Вместо этого их нужно заправлять топливом наподобие бензиновой машины – только вместо бензина они потребляют сжатый водород. Водород смешивается с кислородом воздуха для генерирования электроэнергии, которая и питает двигатель автомобиля. Данные машины не выделяют выхлопов, т.к. продуктом сгорания является чистая вода. Здорово ведь.
Маск же не понимает, как некоторые могут приводить доводы за использования водородных автомобилей – в свою очередь большое число автомобильных компаний (Тойота, Хонда, Дженерал Моторз) в настоящее время вливают огромные средства в производство водородных машин. Чтобы разобраться в противоречиях, я прочитал 12 статей за и против данной технологии. В результате я не остался сильно убеждённым, почему водородные автомобили ждёт многообещающее будущее по сравнению с электрокарами.
Из массы недостатков водородных машин по сравнению с электрическими можно ограничиться лишь следующими:
1) Водородные машины для производства их топлива в итоге оказываются зависимы от природного газа (ископаемое горючее), в то время как производство электричества для электромобилей становится со временем только чище.
2) Запас энергии, расстояние пробега и стоимость водородных топливных элементов оказываются очень схожими с показателями батарей для электромашин, а батареи электромобилей со временем будут улучшаться и дешеветь в производстве.
3) Водород является достаточно опасным и непростым в обращении веществом, особенно очевидным это становится в сравнении с электророзетками для подзарядки электромашин.
4) В будущем, когда в норму войдёт подзарядка машины в собственном гараже, заезд на заправку будет казаться чем-то нелепым и архаичным.
А вот мнение Маска из нашей имейл переписки касательно водородных машин: «Если вы используете электричество солнечной панели для зарядки аккумулятора, то можно достичь 90% производительности. Просто и дёшево. Ежели вы попытаетесь с помощью электричества сперва разложить воду, затем отделить водород до немыслимой чистоты, сжать его до невероятного давления (или что хуже – перевести в жидкую форму), перекачать в огромный (даже для жидкого варианта) водородный бак машины и, в конце-концов, соедините топливо с кислородом – то при большом везении, вам удастся добиться 20% производительности. Дорого, сложно, громоздко и супер неэффективно. Водород проигрывает на всех уровнях, включая время заправки бака по сравнению с заменой батареи Теслы на заряженную. Стоимость водородных топливных элементов высока. Подумайте сами – если бы топливные элементы хоть в чём-то превосходили литиевые батареи – их бы как минимум использовали в спутниках, некоторые из которых стоят более $500 миллионов. Но этого не происходит.»
Наконец, мы подобрались к электромобилям (или ЭМ) типа Ниссан Лиф, БМВ ай3, Форд Форкус Электрик и Тесла Модел Эс. Электрокары просты в устройстве – они состоят из большой батареи, которую вы периодически заряжаете, и электромотора питающегося от неё. И никакой жидкости.
В теории ЭМ вполне оправданы. Давайте попробуем забыть все остальные машины на секунду и взглянем на преимущества электромотора по сравнению с бензиновым двигателем внутреннего сгорания:
Электродвигатели в большинстве случаев более удобны, чем их бензиновые аналоги. Машины на бензине вынуждены ездить на заправку. Обладатели ЭМ, как и свой телефон, втыкают свои транспортные средства на ночь в розетку для подзарядки – никаких остановок для покупки бензина. Бензиновый двигатель гораздо более сложен в устройстве по сравнению с электромотором. Бензиновый мотор состоит из более чем 200 деталей, электрический – менее чем из десяти. Бензиновым двигателям необходима коробка передач (трансмиссия), система выхлопа, шестерёнки и куча других покрытых маслом херовин. В ЭМ все эти компоненты отсутствуют, если вы заглянете под капот – вы обнаружите пустое пространство вроде багажника. Бензиновые двигатели нуждаются в моторном масле – отсюда необходимы периодические заезды на сервис для его замены. ЭМ это ни к чему. Дополнительная сложность в устройстве бензиновых машин означает, что они требуют больше обслуживания по сравнению с электромобилями.
Стоимость питания электромотора гораздо ниже стоимости питания бензинового двигателя. Даже без учёта дополнительных расходов на замену масла и ремонт, сам по себе бензин стоит гораздо дороже электричества. Давайте взглянем на цифры.
В среднем электромобиль может проехать 5 км потратив один киловатт-час (кВт⋅ч) электричества. В США стоимость кВт⋅ч составляет 12 центов. Отсюда получается, что проехать один километр на электромобиле стоит около 2,5 цента.
Высчитать стоимость для бензиновой машины немного сложнее, т.к. цены на бензин нестабильны, а расход топлива бензиновых машин сильно варьирует. При лучших раскладах в условиях необычно дешёвого бензина ($0,40 за литр) и низкого расхода топлива (скажем, 15 км/л) стоимость проехать один километр составляет те же 2,5 цента. В худшем случае при ценах на бензин в $1.08 за литр и расходе в 6 км/л проехать один километр уже стоит 18 центов. При характерном годовом пробеге в 19 тысяч км в самом лучшем варианте бензиновые машины показывают такие же результаты, как и электромобили, а в плохом варианте кататься год на бензине стоит на $3000 дороже.
Автомобили с бензиновыми двигателями являются одной из двух наиболее значимых причин в развитии энергетического и климатического кризисов. Выше мы уже обсуждали данный аспект – транспорт, сжигающий нефть, ответственен за треть всех мировых выбросов, ведёт к загрязнению городов, ставит одни страны в зависимость от других. Электромоторы функционируют без выхлопов. Да, они потребляют электроэнергию, произведённую в том числе и грязным способом, но мы обсудим этот вопрос немного позднее.
Очевидно именно поэтому Маск поведал Кристи Киколсон о своих раздумьях об электромашинах. Электромотор определённо проще, чище и является более разумным долговременным решением для использования в автомобилях.
Но при своём первом появлении, произошедшем более ста лет назад, электромоторы обладали рядом существенных недостатков, которые и предотвратили их широкое применение. А ввиду того, что электромашины перестали производиться ещё тогда, недостаточно времени и денег оказалось вложено для решения всё тех же самых недостатков. Как правило, выделяют три основных беспокойства касательно жизнеспособности электроавтомобилей:
1) Дальность. В действительности здесь заключены три следующих проблемы:
А) Хватит ли заряда батареи для поездок на дальние расстояния? Или же ЭМ годятся только для местных поездок?
Б) Куда податься в случае необходимости подзарядить батарею в пути? Не окажусь ли я на нуле посреди поля?
В) Если всё-таки удастся отыскать станцию подзарядки в пути, придётся ли мне ждать пять часов для полного заряда батареи?
Вышеперечисленные вопросы потенциальных покупателей электромашин относятся к т.н. «беспокойствам о дальности».
2) Разгон. Наиболее распространённый электромобиль в нынешние дни – машинка для перемещения по полю для игры в гольф, что не особо возбуждает автовладельцев. Никто не хочет авто, которое управляется как кусок кала, а если говорить о стремительном ускорении, на ум, как правило, приходят мощные бензиновые двигатели, а не электромоторы.
3) Цена. С самого начала электромобили стоили дороже своих бензиновых аналогов, в основном из-за высокой стоимости батареи.
Сто лет назад, в 1910 году, люди указывали на те же самые три основных проблемы электромобилей, что отчасти является причиной, почему бензиновые автомобили со временем стали доминировать на рынке. У бензиновых автомобилей имелась куча собственных проблем, но Форд умело разобрался, как с ними можно справится – он в своё время совершил то, чего никто не смог сделать для электромашин.
Я поинтересовался мнением Маска о Генри Форде. Вот его ответ: «Форд был человеком, который при появлении препятствий на своём пути, умел находить обходы – он просто-напросто решал проблемы. Он был способен сфокусироваться на нуждах потребителя, даже если сам потребитель толком не мог сообразить, что же ему нужно.»
Когда же в 2003 году Маск завершил раздумья об электромашинах и взялся, собственно, их делать, шансы были отнюдь не на его стороне. Продолжали существовать слишком большие препятствия для входа на рынок, не позволяющие автомобильным стартапам преуспеть практически в течение целого века. В условиях неучтённой стоимости углеродных выбросов, открывать компанию по продвижению электрокаров было сродни игры в баскетбол, где все остальные игроки кроме тебя могут безнаказанно совершать фолы. Доминирующие гигантские нефтяные компании делали всё в своих силах, чтобы срезать на корню любую попытку в продвижении электромашин. Более того, электрокары являлись новым типом автомобилей, развитие которых фактически оказалось остановлено с момента, когда первые производители опустили руки век назад. Дорогостоящий и долгий процесс по навёрстыванию упущенного всё ещё предстояло пройти – все из трёх перечисленных недостатков ЭМ всё ещё нужно было каким-то образом преодолеть.
Встаёт главный вопрос – электромашины не смогли преуспеть в прошлом из-за наличия неразрешимых проблем или же просто до сих пор не нашлось человека, который бы оказался своего рода Генри Фордом для электромобилей?
Источник