Меню

Индукционная сварка электросварка токами высокой частоты

Характеристика и принципы работы высокочастотной сварки. Государственные стандарты, достоинства, применение

Основы

Открытая Михаэлем Фарадеем, индукция берет начала с катушки проводникового материала (например меди). По мере того как ток идет по катушке, магнитные поля возникают вокруг катушки. Возможность магнитного поля выполнять работу зависит от конструкции катушки, а так же от тока, проходящего через нее.

Магнитные поля указаны как линии, проходящие вокруг и через катушку.

Направление магнитных полей зависит от направления тока, таким образом, изменение тока, идущего через катушку, приведет к тому, что магнитные поля сменят направление в той же пропорции что и частота нового тока. 60 Гц переменного тока вызовут поля, которые меняют направление 60 раз в секунду. 400кГц переменного тока вызовут магнитные поля, которые меняют направление 400 000 раз в секунду.

Когда металл, являющийся проводником, помещают в изменяемое магнитное поле (например, поле сгенерированное переменным током), напряжение возникает внутри металла (Закон Фарадея). Вызванное напряжение приведет к потоку электронов: ток! Ток проходит через рабочий кусок металла в противоположном направлении напряжению в индукторе. Это означает что мы можем регулировать частоту тока в металле с помощью управления частотой тока в индукторе.

Так как ток течет через среду, в ней возникнет сопротивление движению электронов. Это сопротивление выявляется как нагрев (Эффект нагрева Джоуля) Материалы с большим сопротивлением к движению электронов покажут больший нагрев при течении тока по ним, но при этом можно так же нагревать металлы с очень высокой проводимостью (например медь) используя вызванные токи. Этот феномен является критичным для индуктивного нагрева.

Общая информация

Способ включает использование законов и явлений физики.

  • электромагнитной индукции;
  • полного тока.
  • эффекта близости;
  • возникновения электромагнитных сил;
  • поверхностного эффекта;
  • влияния на распределение тока в проводнике медных экранов и магнитопроводов;
  • катушечного или кольцевого эффекта;
  • изменения свойств металлов при изменении напряженности магнитного поля и температуры.

При высокочастотном нагревании основная роль отводится явлению поверхностного эффекта и эффекта близости.

Поверхностный эффект

Заключается в неравномерности распространения переменного тока по профилю проводника (глубина проникновения тока). У внешней поверхности плотность тока наибольшая и постепенно уменьшается по мере удаления вглубь. В центре тела она минимальна.

Благодаря поверхностному эффекту, в наружных слоях происходит концентрирование выделения энергии и быстрый нагрев металла. Эффект близости также способствует этому проявлению.

Эффект близости

Заявляет о себе путем прохождения в системе проводников переменного тока. На каждый из проводников при этом распространяется влияние как собственного переменного магнитного поля, так и поля других проводников.

Чем меньше расстояние, отделяющее проводники друг от друга, и выше частота тока, тем сильнее эффект близости.

Это явление способствует усилению концентрации энергии во внешнем слое металла, подвергаемому нагреву. Таким образом, выделение тепловой энергии происходит непосредственно в толще металла, обеспечивая быстрый нагрев в сварочной зоне и высокую эффективность способа нагрева.

Чем индукция отличается от остальных методов нагрева?

Существует несколько методов нагрева предмета без индукции. Самыми распространенными в промышленной практике являются газовые печи, электрические печи и соляные ванны. Данные методы все основаны на передаче тепла предмету от источника (горелки, нагревательного элемента, жидкой соли) посредством конвекции или излучения. После того как поверхность предмета нагрета тепло проходит внутрь посредством тепловой проводимости.

Индукционный нагрев предметов не зависит от конвекции или излучения для доставки тепла к поверхности предмета. Вместо этого тепло генерируется на поверхности предмета посредством течения тока. Затем тепло от поверхности передается внутрь предмета с помощью теплопроводности. Глубина в которой тепло непосредственно генерируется посредством возникновения тока зависит от некоего параметра, называемого Электрическая опорная глубина.

Электрическая опорная глубина очень сильно зависит от частоты возникающего тока текущего в предмете. Большая частота даст небольшую электрическую опорную глубину и более низкая частота приведет к большей электрической опорной глубине. Данная глубина так же зависит от электрических и магнитных свойств предмета.

Электрическая опорная глубина высоких и низких частот.

Группа компаний Индуктотерм использует преимущества данных физических феноменов для заказных решений нагрева для специальных продуктов и применений.

Точный контроль мощности, частоты и геометрии катушки позволяет Группе Индуктотерм разрабатывать оборудование с высокими уровнями управляемости процессом и надежности вне зависимости от применения.

Принцип действия

Теоретические разработки в области индукционных средств нагрева долгое время не могли найти практического применения, так как низкая частота не давала нужного эффекта. Существенные сдвиги появились после того как разрешилась проблема относительно выработки высокочастотных магнитных полей. После этого появилась реальная возможность применения индукционных элементах в нагревательных системах.

Конструкция типового устройства состоит из следующих деталей:

  • Генератор тока. Выполняет преобразование напряжения домашней сети в высокочастотный электрический ток.
  • Индуктор. Представляет собой катушку, изготовленную из медной проволоки, в которой, под действием тока образуется магнитное поле.
  • Нагревательный элемент. Как правило, это отрезок металлической трубы, помещенный внутрь индуктора. Он нагревается сам и передает тепловую энергию в систему отопления.

Индукционная Плавка

Для большинства процессов плавка является первым шагом в производстве полезного продукта, индукционная плавка является быстрой и эффективной. Меняя геометрию индукционной катушки, индукционные печи могут быть различными по размерам – объемом от небольшой чашки кофе до сотен тонн расплавленного металла. Далее, корректируя частоту и мощность, группа компаний Индуктотерм может перерабатывать практически все металлы и материалы, включая железо, сталь и нержавеющие сплавы, медь и сплавы на ее основе, алюминий и кремний и другие. Индукционное оборудование делается на заказ для каждого отдельного применения чтобы использоваться наиболее эффективно.

Сварка прямошовных труб малого и среднего диаметров

Высокочастотная сварка давлением с предварительным нагревом и местным расплавлением свариваемых поверхностей нашла наибольшее применение в производстве прямошовных труб малого и среднего диаметров. В 1975 г. методом высокочастотной сварки в СССР ежедневно изготовлялось более 3 млн. м сварных труб из углеродистых и нержавеющих сталей, сплавов алюминия, меди и титана диаметром от 10 до 530 мм с толщиной стенки от 5 до 10 мм.

Рисунок 1 — Схема агрегата для производства прямошовных труб

Индукционная Вакуумная Плавка

Ввиду того что индукционный нагрев связан с использованием магнитных полей, нагреваемый предмет должен быть физически изолирован от индуктора огнеупором или другим не проводниковым материалом. Магнитные поля будут проходить через этот материал чтобы возбудит напряжение в загрузке содержащейся внутри. Это означает что предмет или материалы могут быть нагреты в условиях вакуума или в аккуратно контролируемой атмосфере. Это позволяет перерабатывать очень активные металлы (Титан, алюминий), специальные сплавы, кремний, графит и любые другие чувствительные проводимые материалы.

Как из инвертора для сварки сделать нагреватель

Принцип нагрева металла вихревыми токами, индуцируемыми внешним электромагнитным полем, известен достаточно давно. Плавильные индукционные тигельные печи используются в металлургии с начала прошлого века. Индукционный нагрев применяется при закалке инструмента и пайке массивных деталей.
Идея использовать индукционный нагрев в системах отопления начала реализовываться в конце прошлого века. Наряду с промышленными установками, стали появляться самодельные устройства, в том числе такие, как индукционный нагреватель из сварочного инвертора.

Индукционный нагрев

В отличие от методов горения, индукционный нагрев является точно контролируемым вне зависимости от объема нагреваемого предмета. Варьируя ток, напряжение и частоту в индукторе можно получить точно настроенный нагрев, отлично подходящий для точных применений, таких как упрочнение корпусов, отпуск и упрочнение, отжиг и другие формы термической обработки. Высокий уровень точности контроля является критичным для некоторых применений, таких как автомеханика, аэрокосмическая отрасль, стекловолокно, военная техника, упрочнение проволоки и отпуск. Индукционный нагрев отлично подходит для специальных металлических производств с применением титана, драгоценных металлов и улучшенных композитов. Точное управление нагревом которое обеспечивает индукционный нагрев не может быть обеспечено ни одним другим способом. Кроме того, используя ту же базу что и для вакуумного нагрева в тигле, индукционный нагрев может быть выполнен в атмосфере с непрерывным применением. Например для отжига трубки из нержавеющей стали.

Режимы термической обработки

Данный процесс состоит из трех этапов:

  • индукционного нагрева сварного шва до необходимой температуры;
  • выдержки в таком состоянии в течение некоторого времени;
  • охлаждения с определенной скоростью.

При монтаже трубопроводных систем используются следующие режимы:

  • термический отдых. Как правило, используется для сварных соединений в системах толстостенных труб, для которых применение других режимов нагрева затруднено;
  • высокий отпуск. Такой обработке подвергаются сварные швы из сталей перлитного класса. Высокий отпуск позволяет снизить на 70–90 % остаточные напряжения, повысить пластичность и вязкость металла;
  • нормализация. Нагрев снижает уровень остаточных напряжений, приводит к образованию однородной мелкозернистой структуры. Нормализации чаще всего подвергаются соединения в системах тонкостенных труб малого диаметра из стали перлитного класса, особенно если они выполнены методом газовой сварки;
  • аустенизация и стабилизирующий отжиг. Оба этих вида термической обработки применяются для улучшения качества сварных соединений труб из высоколегированных марок аустенитного класса.
Читайте также:  Удельное сопротивление растекания тока в заземлителях

Высокочастотная индукционная сварка

Когда индукция возникает с использованием тока Высоких Частот (ВЧ) возможно производить даже сварку. В этом применении используется настолько небольшая электрическая опорная глубина насколько это возможно при использовании высоких частот. В данном случае полоса металла формируется постоянно и затем проходит через точно рассчитанные валки, целью которых является прижать края проходимых лент металла вместе для начала сварки. Прямо перед тем как пройти через валки металл проходит через индукционную катушку. В этом случае ток течет вдоль геометрической V образованной краями ленты вместо выхода наружу формируемого канала. По мере того как ток течет вдоль краев ленты они нагреваются до подходящей для сварки температуры (чуть ниже температуры плавления материала). Когда края сдавлены вместе, все осколки, оксиды и другие загрязнения выдавливаются наружу и получается твердый кованный шов.

мтомд.инфо

Индукционная сварка металлов

При индукционной сварке (ИС) детали нагревают или вихревыми токами, наводимыми магнитным полем, создаваемым близко расположенным к изделию индуктором, подключенным к генератору токами высокой частоты (индукционная схема), или протекаемым током в случае, когда изделие включено непосредственно в цепь высокочастотного генератора (кондукционная схема токоподвода). Этим методом можно соединять черные и цветные металлы и их сплавы, а также пластмассы и синтетические ткани. При индукционном подводе тока соединяемые трубы перед обжимными валками проходят в непосредственной близости от трансформатора или индуктора. Две кромки трубы, расположенные с диаметрально противоположных сторон, подаются друг к другу под некоторым углом, образуя щель V-образной формы. При прохождении под индуктором в свариваемых деталях индуктируются вихревые токи, направленные противоположно току в индукторе. Встречая на своем пути V-образную щель, ток отклоняется к вершине угла схождения. В силу эффекта близости и поверхностного эффекта ток концентрируется в основном на свариваемых участках поверхностей, обращенных друг к другу, тем самым обеспечивая быстрый нагрев металла до температуры сварки. Нажимные ролики обеспечивают контакт свариваемых кромок трубы.

Свариваемые кромки необходимо обработать до металлического блеска (допускается прокатная окалина), но на них не допускаются заметные неровности.

Для повышения эффективности нагрева внутрь кольцевого индуктора (в трубную заготовку) вводится ферромагнитная масса — ферритовый магнитный сердечник.

Сварка по этой схеме применяется для изделий, имеющих замкнутое поперечное сечение. Она целесообразна для непрерывной последовательной шовной сварки труб.

Рисунок 1 — Индукционная сварка труб вращающимся трансформатором


1 — сварочный трансформатор (вращающийся трансформатор); 2 — охлаждение; 3 — изоляция; 4 — роликовые электроды; 5 — сварочный шов; 6 — боковые нажимные ролики; 7 — стол; 8 — труба с пазом; 9 — сваренная часть трубы
На рисунке 2 показана схема продольной сварки труб с кольцевым индуктором. Этот метод может применяться для сварки труб диаметром 10—100 мм с толщиной стенок 0,5—15 мм из низкоуглеродистых и высокоуглеродистых сталей, нержавеющих и кислотостойких сталей, труб из цветных металлов — меди, латуни, бронзы, алюминия и их сплавов.

Рисунок 2 — Индукционная сварка труб со стержневым индуктором


1 — несваренная часть трубы; 2 — токопроводящая шина; 3 — охлаждающий канал; 4 — магнитное ярмо; 5 — пара нажимных роликов; 6 — индукционный генератор; 7 — сваренная часть трубы
С увеличением диаметра труб эффективность охватывающих индукторов резко снижается, наиболее эффективным оказался подвод тока с помощью внутренних индукторов или по совмещенной системе, использующей одновременно как охватывающие, так и внутренние индукторы. Основной эффект от применения внутренних индукторов связан с возможностью уменьшения потерь в теле трубной заготовки.

Рисунок 3 — Индукционная сварка труб с кольцевым индуктором


1 — шлицевая труба; 2 — кольцевой индуктор; 3 — магнитный сердечник (используется при малом диаметре труб); 4 — зона токопрохождения; 5 — пара нажимных роликов; 6 — генератор высокой частоты; 7 — сваренная часть трубы; 8 — охлаждение водой
В результате большого удельного давления образуется значительный грат, который следует удалить из зоны сварки. При последовательном расположении стержневых индукторов одинаковой или различной мощности можно проводить предварительный и окончательный нагрев, а также сварку труб с большой толщиной стенок.

С помощью сварки изготавливают высококачественные стальные трубы в соответствии с условиями поставки на сварные стальные трубы.

Рисунок 4 — Индукционная стыковая сварка труб

1 — свариваемая труба; 2 — индуктор; 3 — магнитопровод; 4 — зажимы для фиксации свариваемых труб и создания осадки
Имеющийся зазор между индуктором и изделием позволяет сваривать горячекатаный материал без специальной обработки поверхности и торцов заготовки.

Преимущества индукционной сварки с индукционным подводом следующие:

  • быстрый нагрев;
  • продолжительный срок службы индуктора;
  • отсутствие на свариваемых деталях под индуктором рисок, царапин и др.

К недостаткам индукционной сварки следует отнести:

  • сложность поддержания равномерного зазора между индуктором и поверхностью свариваемых деталей;
  • сравнительно высокую потребляемую мощность из-за растекания тока по поверхности трубы вне зоны сварки и трудность сосредоточения разогрева в зоне сварки.

В отличие от индукционного токоподвода при контактном наблюдается сконцентрированное выделение теплоты в зоне сварки.

Контактный токоподвод при непрерывной сварке применяется чаще всего при производстве электросварных труб. Эта схема позволяет существенно расширить номенклатуру свариваемых изделий, более экономно расходовать энергию, но при этом приходится считаться с ограниченным ресурсом токоподводов. Износостойкость контактов и надежность систем со скользящими контактами зависят от ряда факторов, важнейшими из которых являются материал контактов, сила прижима, условия охлаждения, величина тока.

Рисунок 5 — Индукционная сварка труб с контактными электродами


1 — несваренная часть трубы; 2 — скользящий контакт тока высокой частоты; 3 — зона токопрохождения на трубе; 4 — пара нажимных роликов; 5 — генератор высокой частоты; 6 — свариваемая труба; 7 — охлаждение водой
Промышленное применение индукционной сварки связано главным образом с трубным производством, где этот процесс во многих случаях заменяет контактную и дуговую сварки. Индукционной сваркой изготавливают прямошовные трубы (из сталей, алюминиевых сплавов, латуни и др.) малого и среднего диаметров (12… 150 мм) при толщине стенки 0,8…6 мм, а также большого диаметра (400…600 мм) при толщине стенки до 8 мм. Наряду с основными их потребителями (машиностроение и строительные конструкции), они находят все большее применение в нефте- и газодобыче. Так, в США производство сварных труб для этих целей достигло 30% от общего выпуска; крупные мощности по производству обсадных и насосно-компрессорных труб введены в Японии. В ряде стран применяется индукционная сварка при производстве прямошовных труб большого (450… 1220 мм) диаметра с толщиной стенки до 16 мм из листов длиной 12 м.

Индукционная сварка получила распространение для изготовления биметаллических полос толщиной до 14 мм и металлических оболочек электрических кабелей.

Вместе с этим индукционная сварка находит достаточно широкое применение для соединения пластмасс и текстильных материалов.

Источник

Индукционная сварка металлов, принцип работы технологии и основные положения для работы

США
Россия
Украина
Беларусь
Молдова

  1. 5
  2. 4
  3. 3
  4. 2
  5. 1

(2 голоса, в среднем: 4.5 из 5)

Индукционная сварка металлов включает в себя способ термической обработки металла, при котором заготовка нагревается путем электромагнитной индукции, в результате чего сдавливается. Для этого используют токи высокой частоты от десятков Гц до сотен кГц, они наиболее удобны для введения в металл. В практике всегда пользуются таким током от машинных или ламповых генераторов. Такая сварка длится всего несколько секунд по той причине, что процесс нагрева не связан ни с толщиной материала, ни с его теплопроводностью. Более экономичный расход происходит за счет того, что тепло выделяется на соединяемых поверхностях.

Частое применение такой сварки приходится в производстве стальных труб. Поскольку стальная труба имеет высокое индуктивное сопротивление, ток высокой частоты не растекается по периметру, трубы обжимаются и свариваются. Индукционная сварка металлов, а именно труб, выполняется при помещении деталей в индуктор.

Когда свариваемые части проходят индуктор, в месте соединения индуктируются вихревые токи, имеющие противоположное направление току в индукторе. На своем пути токи встречают щель соединения и направляются к ней. Концентрация тока приходится в основном на свариваемых участках поверхности, наступает быстрый нагрев металла до необходимой температуры сварки.

Оборудование для такой сварки имеют разные оттенки своего применения, но принцип их работы основывается на подаче тока на металл, с целью ее нагрева и сварке или пайке в нужном месте, делая это достаточно быстро и надежно. Популярным на практике индукционное оборудование «Termomaccin» в трубном производстве. Оно предназначено для отжига ребристых гладких труб из углеродистой, нержавеющей стали и их сварки, а также горячей формовки торцов, отжига трубочек для холодильных установок, торцов труб после гидроформовки.

Читайте также:  Гомеопатия при ударе током

Индукционная сварка металлов включает в себя основную схему работы:

  • края свариваемых кромок необходимо зачистить до блеска, хотя допускается окалина;
  • чтобы повысить эффект нагрева, в трубную заготовку вводят ферритовый магнитный сердечник;
  • подается ток, возможен до сотни кГц, для сильного нагрева металла.

США
Россия
Украина
Беларусь

Источник

Индукционные системы нагрева при сварочных работах

Сварка пластмасс в электрическом поле высокой частоты

ТВЧ-сварка (сварка током высоких частот) пластмасс осуществляется за счет разогрева материала после поглощения им энергии образующегося электрического поля.

Профессиональные ТВЧ станки обеспечивают локальный быстрый нагрев соединяемых поверхностей, при этом нет проплавления всей поверхности и объёма материала. За счёт этого сварка ТВЧ может использоваться для соединения материалов, имеющих узкий температурный интервал вязко-текучего состояния, а также высокую вязкость расплава.

При сварке материал располагается между металлическими электродами, и при подключении данной системы к источнику электроэнергии высоких частот образуется конденсатор. Материал-диэлектрик под воздействием электрического поля поляризуется. При переменном электрическом поле в материале образуется переменная поляризация, которая сопровождается смещением заряженных частиц, входящих в атомы и молекулы. Большая часть реальных диэлектриков (включая термопласты), помещаемых в переменное поле, имеет определённую проводимость.

Причиной для нагревания полимеров в электрополе высокой частоты являются особые звенья в их молекулах, которые имеют дипольное строение и могут при наложении внешнего поля поляризоваться. Микродиполи при попадании полимеров в переменное электрическое поле будут ориентироваться по направлению электрического поля: отрицательные заряды будут тянуться к положительно заряженной пластине конденсатора, положительно заряженные — к отрицательной пластине, а при смене на обкладках конденсатора знака заряда ориентация участков молекул будет меняться. Препятствовать этой смене ориентации будут соседние молекулы и соседние звенья этой же молекулы. Энергия, которая будет тратиться на преодоление этих препятствий, превращается в тепловую. Вязкость полимера при нагреве уменьшается и улучшаются условия ориентации.

Диполи диэлектрика при малых частотах изменения электрического поля ориентируются без запаздывания, а при возрастании частоты поля скорость поворота диполей увеличивается, соответственно, увеличивается трение частиц. Поляризация при очень большой частоте ослабевает, поскольку частицы не успевают сделать полную ориентацию.

По результатам исследований, процесс теплообразования в высокочастотном электрическом поле определяется параметрами поля, то есть напряжённостью и частотой, и диэлектрическими свойствами полимера. От теплопроводимости материала cкорость нагрева материала не зависит, поскольку теплопроводность определяет только потери теплоты в массу электродов и околошовную зону. Соответственно, максимальная температура при сварке обычно сосредоточена именно на контакте деталей, минимальная сосредотачивается на границе электродов и изделия. Подобное рациональное распределение температуры является неоспоримым преимуществом ТВЧ-сварки, поскольку не происходит наружного перегрева вещества. Скорость нагрева увеличивают изменением частоты и напряженности электрополя, однако увеличение напряженности ограничено определённым пределом – если он превышен, происходит электрический пробой находящегося между электродами свариваемого материала. Это становится причиной брака во шве и нарушает режим работы генератора высоких частот.

Частота электрополя также ограничена габаритами конденсатора – если нарушены определённые соотношения, пластмассы могут нагреваться неравномерно.

Способы сварки токами высокой частоты

Существует три технологии ТВЧ-сварки: шовная, точечная и прессовая. Выбор сварочной технологий в большинстве случаев определяется особенностями конструкции изделий.

Прессовый метод ТВЧ-сварки

Прессовый метод (рис. 1, а) заключается в следующем: свариваемые детали изделия помещаются между обкладками рабочего конденсатора, то есть электродами. Один или оба электрода повторяют конфигурацию шва. Можно задать любую форму шва, так как электроды сменные.

Рис. 1 Сварка пластмасс в высокочастотном электрическом поле: 1-электроды, 2-свариваемые детали изделия, 3-генератор, 4-диски

Одновременно с подачей напряжения на электроды от генератора подается соответствующее давление на свариваемые детали. Место сварки одновременно и равномерно нагревается по всей длине, это обеспечивает не только высокое качество, но и надёжность и стабильность механических свойств полученного сварного шва. Прессовая технология ТВЧ-сварки ограничена в использовании – толщина соединяемых деталей не должна превышать 5 мм.

Прессовая сварка – это наиболее распространённый и универсальный метод ТВЧ-сварки пластмасс. Эта технология используется для сварки деталей, декоративной отделки, клеймения изделий, нанесения аппликаций.

Шовный метод ТВЧ-сварки

Шовный метод (рис. 1, б) заключается в следующем: два диска, которые вращаются в противоположные стороны, создают одновременно с нагревом давление на свариваемые детали. Несмотря на кажущуюся простоту, шовная технология имеет один достаточно серьезный недостаток — для того, чтобы обеспечить высокую производительность при небольшой площади сварки, необходимо требуется повышать частоту тока и напряжение, удельную мощность. А эти показатели, как сказано выше, ограничены, соответственно, производительность сравнительно невелика. В связи с этим на производстве шовный метод используется достаточно редко, в основном для сварки тонких пленок.

Точечный метод ТВЧ-сварки

Точечный метод (рис. 1, б) представляет собой разновидность шовной технологии и отличается от неё видом шва: шов по длине получается не сплошным, а прерывистым, то есть отдельными точками. Данная технология ТВЧ-сварка используется преимущественно для прихватки изделий, собранных под шовную либо прессовую сварку.

В высокочастотном электрополе также сваривают поперечные стыки труб, но сделать разогрев равномерным по всему периметру стыка достаточно сложно, поэтому для сварки стыков труб применяются кольцевые неразъёмные либо разъёмные электроды. Особенно значимый параметр сварки в данном случае – это расстояние от электрода до стыка. При уменьшении расстояния возрастает напряженность поля в стыке, поэтому его выбору нужно уделять особое внимание.

Основные технологические параметры ТВЧ-сварки:

  1. величина давления;
  2. напряжённость электрического поля;
  3. продолжительность нагрева

В основном большинство полимерных материалов хорошо нагревается при частотах в пределах 10 — 150 МГц. Для обеспечения стабильности работы оборудования и отсутствия целесообразнее устанавливать верхний предел частот, хотя максимальное КПД генератора обеспечивается на нижнем пределе. Частота электрополя нормирована и зависит от полос частот, которые разрешены для применения в технических целях. Чтобы не создавать помехи телевидению, радиовещанию и остальным службам РФ, для ТВЧ-сварки разрешены частоты 27, 12; 81, 36; 40, 62; 152 МГц.

Стоит отметить, что такие широко используемые термопласты, как фторопласт-4, полистирол полиэтилен и некоторые другие, к сожалению, непосредственно сваркой ТВЧ не соединяются, потому что относятся к наиболее совершенным диэлектрикам, соответственно, не могут генерировать достаточное количество тепла, необходимого для сварки.


Контактный способ

Самым распространённым способом изготовления электросварных труб, является вариант с использованием контактного токопровода, ввиду сконцентрированного выделения теплоты в зоне сварки. Использование этой схемы позволяет более экономно расходовать энергию и увеличить перечень свариваемых изделий.

Сварка токами высокой частоты

Но так же есть и свои недостатки. К ним можно отнести недолговечность контактного элемента и его малую износостойкость, которая зависит от ряда причин таких как:

  • материал контакта;
  • способ его охлаждения;
  • степень прижима и сила тока.

Сюда же следует отнести сварку вращающимся контактным трансформатором.

Сварка токами высокой частоты

Как сделать такой аппарат для контактной сварки, можно узнать на сайте . Сам аппарат состоит из:

  • трубы;
  • скользящих контактов;
  • сердечника;
  • обжимных роликов.

Подключение к индуктору

Вначале следует сказать о конструкции самого индуктора. Его рекомендуется сделать в виде цилиндрической катушки, намотанной в один ряд медным проводом. Витки должны быть изолированы друг от друга.

Рекомендуемое число витков – от 80 до 100. Сечение провода обычно составляет 2,5 – 4 мм2. В качестве сердечника можно использовать саму трубу отопления, но практические опыты показали, что вода при этом греется слабо. Поэтому была опробована другая конструкция сердечника.

Для более интенсивного нагрева теплоносителя в качестве сердечника предложено использовать отрезок пластиковой трубы, заполненный обрезками стальной проволоки, диаметром 5 – 6 мм.

При такой схеме происходит индукционный нагрев проволоки, обтекаемой теплоносителем. За счет увеличения площади теплообмена вода нагревается значительно интенсивней. Участок трубы с проволокой следует ограничить стальными сетками с обеих сторон, во избежание попадания обрезков в систему отопления.

Что касается собственно подключения сварочного инвертора, то рекомендации тех, кто сделал индукционный нагреватель своими руками, несколько неоднородны.

Так, часть советов сводится к изготовлению дополнительного промежуточного трансформатора, во вторичную обмотку которого включается индуктор с конденсатором.

Другая часть мастеров просто наматывают один виток медного провода на тороидальный высокочастотный трансформатор сварочного инвертора и напрямую к нему подключают индуктор.

Читайте также:  Химические источники тока утилизация

В любом случае, не следует использовать выводы + и — сварочного инвертора, с которых осуществляется сварка. Напряжение на них выпрямленное, с наложенными высокочастотными пульсациями. Постоянная составляющая сварочного напряжения просто перегреет индуктор, не создавая рабочего поля.

Подключение к индуктору

Вначале следует сказать о конструкции самого индуктора. Его рекомендуется сделать в виде цилиндрической катушки, намотанной в один ряд медным проводом. Витки должны быть изолированы друг от друга.

Рекомендуемое число витков – от 80 до 100. Сечение провода обычно составляет 2,5 – 4 мм2. В качестве сердечника можно использовать саму трубу отопления, но практические опыты показали, что вода при этом греется слабо. Поэтому была опробована другая конструкция сердечника.

Для более интенсивного нагрева теплоносителя в качестве сердечника предложено использовать отрезок пластиковой трубы, заполненный обрезками стальной проволоки, диаметром 5 – 6 мм.

При такой схеме происходит индукционный нагрев проволоки, обтекаемой теплоносителем. За счет увеличения площади теплообмена вода нагревается значительно интенсивней. Участок трубы с проволокой следует ограничить стальными сетками с обеих сторон, во избежание попадания обрезков в систему отопления.

Что касается собственно подключения сварочного инвертора, то рекомендации тех, кто сделал индукционный нагреватель своими руками, несколько неоднородны.

Так, часть советов сводится к изготовлению дополнительного промежуточного трансформатора, во вторичную обмотку которого включается индуктор с конденсатором.

Другая часть мастеров просто наматывают один виток медного провода на тороидальный высокочастотный трансформатор сварочного инвертора и напрямую к нему подключают индуктор.

В любом случае, не следует использовать выводы + и — сварочного инвертора, с которых осуществляется сварка. Напряжение на них выпрямленное, с наложенными высокочастотными пульсациями. Постоянная составляющая сварочного напряжения просто перегреет индуктор, не создавая рабочего поля.

Особенности систем индукционного нагрева

Стандартное оборудование представляет собой источник питания в защитном корпусе с разъемами для подключения удлинительных кабелей. Индукционная система нагрева оснащается воздушным или жидкостным охлаждением, встроенным регулятором температуры. Опционально она может комплектоваться тележкой на колесах, а также электронным записывающим устройством. Программирование имеет два режима: ручной, когда оператор сам выставляет время обработки, и автоматический. В последнем случае выходная мощность зависит от текущей температуры детали.

Все системы имеют высокую степень защиты, исключающую поражение электрическим током при работе. Если разъем не закрыт заглушкой или к нему не подключен кабель, питание на него не подается. Некоторые модели оснащаются дистанционными выключателями.

Индукционные системы нагрева с воздушным охлаждением комплектуются специальным одеялом с кевларовым чехлом. Такое оборудование применяется при работе с надземными и подводными трубопроводами, в судостроении (для обработки кромок значительной длины), горной промышленности. Большинство моделей данного типа оснащены несколькими разъемами для удлинительных кабелей, что позволяет обрабатывать одновременно более чем одну деталь.

Системы с жидкостным охлаждением имеют дополнительный кабель, который подсоединяется к обрабатываемой детали. Он размещен в армированном силиконовом шланге. Это обеспечивает прочность последнего, создает необходимые условия для подачи жидкости, охлаждающей проводник тепла.

Индукционная система нагрева с жидкостным охлаждением используется для горячей посадки фланцев и других компонентов на вал, а также для их последующего снятия. Ее применяют при строительстве технологических трубопроводов в полевых условиях и сварочных цехах. В горной и судостроительной промышленности такое оборудование используют для быстрого нагрева кромок значительной протяженности — например, для швов деталей корпуса.

Режимы термической обработки

Данный процесс состоит из трех этапов:

  • индукционного нагрева сварного шва до необходимой температуры;
  • выдержки в таком состоянии в течение некоторого времени;
  • охлаждения с определенной скоростью.

При монтаже трубопроводных систем используются следующие режимы:

  • термический отдых. Как правило, используется для сварных соединений в системах толстостенных труб, для которых применение других режимов нагрева затруднено;
  • высокий отпуск. Такой обработке подвергаются сварные швы из сталей перлитного класса. Высокий отпуск позволяет снизить на 70–90 % остаточные напряжения, повысить пластичность и вязкость металла;
  • нормализация. Нагрев снижает уровень остаточных напряжений, приводит к образованию однородной мелкозернистой структуры. Нормализации чаще всего подвергаются соединения в системах тонкостенных труб малого диаметра из стали перлитного класса, особенно если они выполнены методом газовой сварки;
  • аустенизация и стабилизирующий отжиг. Оба этих вида термической обработки применяются для улучшения качества сварных соединений труб из высоколегированных марок аустенитного класса.

Источник



Технология и особенности индукционной сварки

Среди нескольких способов соединения металлов существует следующий вид – индукционная сварка, которая также называется высокочастотная. Она отличается интересным принципом работы, являясь удобным и актуальным типом сваривания металлов.

Что такое индукционная сварка

Индукционная сварка металлов представляет собой метод термической обработки металлических заготовок под давлением. Для нагревания свариваемых деталей применяется электромагнитная индукция. Индукционная катушка, размещенная в сварочном аппарате, возбуждается с помощью электротока высокой частоты. За счет катушки происходит генерация высокочастотного электромагнитного поля, воздействующего на ферромагнитный или токопроводящий материал.

Процесс индукционной сварки

Нагревание в заготовках из ферромагнитного материала получается, в основном, под воздействием гистерезиса. В заготовках из токопроводящего материала главный тип нагревания – резистивный, который вызывается вихревыми токами.

Немагнитные или электроизоляционные материалы, к примеру, пластик, могут подвергаться индукционной сварке с помощью размещения в них ферромагнитных или металлических смесей. Они называются приемники индукционных токов, поскольку их цель – забрать индукционную энергию у катушки. Приемники после нагрева и за счет теплопроводности переносят тепло материалу, который их окружает.

Индукционная сварка – это процесс работы, являющийся высокоавтоматизированным. Осуществляется он очень быстро. Это объясняется тем, что к участку сварки возможна передача огромного количества энергии, за счет чего происходит плавление соединяемых поверхностей за очень короткое время. В результате поверхности быстро прижимаются друг к другу, и получается непрерывный сварной шов.

Глубина проникновения индуцированных токов зависит от многих причин, в том числе, от температуры и химического состава металла.

Индукционная сварка

Область применения

Чаще всего высокоточная сварка применяется в трубной промышленности. Она идеально подходит для производства труб из разных металлов: медных, алюминиевых, стальных. Также соединяются поверхности других полых профилей. Чтобы придать необходимую форму плоским металлическим полосам, применяются специальные ролики, служащие для направления заготовки, которая перемещается через индуктор.

Причем индукционные токи двигаются к текущей точке контакта, проходя через оба края будущего изделия.

Данная технология также используется при производстве ребристых труб, которые используются для изготовления теплообменников. В этом случае, применяется способ высокоскоростного последовательного приваривания к трубе из высокоуглеродистой стали цельной спиралевидной заготовки оребрения.

Плюсы и минусы

По сравнению с иными способами соединения металлов, индукционная сварка значительно производительнее – в 2 раза. К преимуществам относится:

  • экономия электроэнергии, т. к. не требуется предварительный нагрев заготовки;
  • пониженная длительность циклов нагрева (уменьшение потребления электроэнергии);
  • высокая точность участка нагрева, поскольку уменьшается число зон нагрева;
  • отсутствие соприкосновения индуктора с деталью, за счет чего снижаются затраты на техническое обслуживание аппарата;
  • уменьшение трудоемкости по очистке готового изделия;
  • сокращение длительности производственного цикла;
  • комфортные условия при выполнении работ и понижение риска получения травм;
  • высокое качество сварочных швов.

К недостаткам можно отнести трудность в поддержании равномерного зазора между заготовкой и индуктором, сложность сосредоточения нагрева на участке сварки. Также минусом является высокое потребление энергии.

Шов индукционной сварки

Технология выполнения индукционной сварки

Так как изделия из прочных металлов обладают высоким уровнем индуктивного сопротивления, то высокочастотный ток не распространяется по периметру, в результате чего, трубы подвергаются сжиманию и свариваются. Соединение заготовок производится при размещении их в индуктор. В тот момент, когда свариваемые детали помещаются в индуктор, на участках соединения осуществляется индукция вихревых токов, которые имеют противоположное направление относительного тока, размещенного в индукторе.

Проходящим токам на пути попадается щель соединения, и они движутся по направлению к ней. Концентрация тока сосредоточена, главным образом, на свариваемых частях поверхности, и металл быстро нагревается до требуемой температуры, которая является оптимальной для сварки.

Оборудование и материалы

Любое оборудование для выполнения индукционной сварки, независимо от назначения, состоит из таких элементов:

  • индуктор (токопровод);
  • источник питания ТВЧ;
  • сварочная головка с трансформатором высокой частоты и конденсаторной батареей;
  • технологическая оснастка, чтобы фиксировать заготовки;
  • устройство для создания давления.

Индукционная сварка применяется для обеспечения максимальной точности и чистоты свариваемых заготовок, необходимых для производственных, монтажных, ремонтных работ. Использование данного оборудования позволяет в кратчайшие сроки осуществить работы. Модели сварочных аппаратов производятся различными по мощности, конструктивным особенностям, частоте тока, цене, рабочему напряжению и другим критериям.

Источник