Меню

Индикация рабочего тока сети

Индикатор напряжения на светодиодах: схема, как сделать своими руками самодельный указатель напряжения в сети

Назначение элементов и принцип работы схемы

У многих читателей в доме установлены выключатели света со светодиодной подсветкой. Схема светодиодной подсветки выглядит следующим образом:

  1. Параллельно контакту выключателя включается цепочка, состоящая из гасящего резистора, светодиода и простого кремниевого диода.
  2. При разомкнутом выключателе электрический ток протекает через гасящий (токоограничивающий) резистор, включенные встречно-параллельно светодиоды и лампу накаливания.
  3. Во время одной из полуволн, когда положительное напряжение приложено к аноду LED, светоизлучающий диод светится. Тем самым не только обеспечивается подсветка выключателя, но и осуществляется светодиодная индикация напряжения.

Индикатор на светодиодах в действии

Если убрать из схемы выключатель, лампочку и провода, у нас останется цепочка, состоящая из резистора и двух диодов. Эта цепочка представляет собой простейший индикатор (указатель) переменного тока 220 В.

Остановимся подробнее на назначении элементов схемы. Выше мы указывали, что рабочий ток сигнального LED составляет около 10-15 мА. Понятно, что при непосредственном подключении светоизлучающего диода к сети 220 В через него будет протекать ток, во много раз превышающий предельно допустимое значение. Для того чтобы ограничить ток LED, последовательно с ним включают гасящий резистор. Рассчитать номинал резистора можно по формуле:

R = (U max – U led) / I led

  • U max – максимальное измеряемое напряжение;
  • U led – падение напряжения на светодиоде;
  • I led – рабочий ток светоизлучающего диода.

Выполнив простейший расчет, для сети 240 В мы получим номинал резистора R1 равный 15-18 кОм. Для сети 380 В нужно применить резистор, имеющий сопротивление 27 кОм.

Кремниевый диод выполняет функцию защиты от перенапряжения. Если он отсутствует, при отрицательной полуволне U на запертом светодиоде будет падать 220 В или 380 В. Большинство светоизлучающих диодов не рассчитано на такое обратное напряжение. Из-за этого может произойти пробой p-n перехода LED. При встречно-параллельном подключении кремниевого диода, во время отрицательной полуволны он будет открыт и U на светодиоде не превысит 0,7 В. LED будет надежно защищен от высокого обратного напряжения.

На основе рассмотренной схемы можно сделать индикатор напряжения 220/380 В. Достаточно дополнить радиоэлементы двумя щупами и поместить их в подходящий корпус. Для изготовления корпуса индикатора подойдет большой маркер или толстый фломастер. Можно разместить радиодетали на самодельной печатной плате или выполнить соединения навесным способом.

Материалы для сборки индикатора

В маркере проделывают отверстие, в которое вставляют светодиод. На одном конце корпуса закрепляют металлический щуп. Через второй конец корпуса пропускают провод, идущий ко второму щупу или изолированному зажиму «крокодил».

Несмотря на простоту конструкции, устройство позволит проверять наличие напряжения на выходе автоматического выключателя или в розетке, найти сгоревший предохранитель в распределительном щите. Заметим, что приведенная схема индикатора применяется и в промышленных изделиях.

Индикатор переменного напряжения 220 В

Рассмотрим первый, наиболее простой вариант индикатора сети на светодиоде. Его применяют в отвертках для нахождения фазы 220 В. Для реализации нам понадобится:

  • светодиод;
  • резистор;
  • диод.

Схема индикатора напряжения на светодиодах

Светодиод (HL) вы можете выбрать абсолютно любой. Характеристики диода (VD) должны быть ориентировочно такими: прямое напряжение, при прямом токе 10-100 мА – 1-1,1 В. Обратное напряжение 30-75 В. Резистор (R) должен иметь сопротивление не меньше 100 кОм, но и не больше 150 кОм, иначе просядет яркость свечения индикатора. Такое устройство можно самостоятельно выполнить в навесной форме, даже без использования печатной платы.

Схема примитивного индикатора тока будет выглядеть аналогичным образом, только необходимо использовать емкостное сопротивление.

Проверка постоянного напряжения

Нередко возникает необходимость прозвонить низковольтную цепь бытовых приборов, либо проверить целостность соединения, например, провод от наушников.

Работа с постоянным током

В качестве ограничителя тока можно использовать маломощную лампу накаливания либо резистор на 50-100 Ом. В зависимости от полярности подключения загорается соответствующий диод. Этот вариант подходит для цепей до 12В. Для более высокого напряжения потребуется увеличить сопротивления ограничивающего резистора.

Индикатор переменного и постоянного напряжения до 600 В

Следующий вариант представляет собой немного более сложную систему, из-за наличия в схеме кроме уже известных нам элементов, двух транзисторов и емкости. Но универсальность этого индикатора вас приятно удивит. Ему доступна безопасная проверка наличия напряжения от 5 до 600 В, как постоянного, так и переменного.

Схема индикатора напряжения на светодиодах от 5 до 600 Вольт

Основным элементом схемы индикатора напряжения выступает полевой транзистор (VT2). Пороговое значение напряжения, которое позволит сработать индикатору фиксируется разностью потенциалов затвор-исток, а максимально возможное напряжение определяет падение на сток-истоке. Он выполняет функции стабилизатора тока. Через биполярный транзистор (VT1) осуществляется обратная связь для поддержания заданного значения.

Принцип работы светодиодного индикатора заключается в следующем. При подаче на вход разности потенциалов, в контуре возникнет ток, значение которого определяется сопротивлением (R2) и напряжением перехода база-эмиттер биполярного транзистора (VT1). Для того чтобы слабенький светодиод загорелся, достаточно тока стабилизации 100 мкА. Для этого сопротивление (R2) должно быть 500-600 Ом, если напряжение база-эмиттер примерно 0,5 В. Конденсатор (С) необходим неполярный, емкостью 0,1 мкФ, служит он защитой светодиода от скачков тока.

Резистор (R1) выбираем величиной 1 МОм, он исполняет роль нагрузки для биполярного транзистора (VT1). Функции диода (VD) в случае индикации постоянного напряжения – это проверка полюсов и защита. А для проверки переменного напряжения он играет роль выпрямителя, срезая отрицательную полуволну. Его обратное напряжение должно быть не меньше 600 В. Что касается светодиода (HL), то выбирайте сверхъяркий, для того, чтобы его свечение при минимальных токах было заметно.

Индикатор для микросхем – логический пробник

Научившись создавать простейший пробник электрика своими руками, на основе LED также можно сделать простой логический пробник, который поможет отыскать неисправности в цифровых устройствах.

Логические пробники появились на заре вычислительной техники. При помощи них специалисты анализировали логические уровни на входах и выходах цифровых микросхем. Высокому уровню (напряжению) на выходе логического элемента присваивается значение логической «единицы», а низкому уровню – логического «нуля». Сопоставляя уровни на входе и выходе цифровой микросхемы, можно судить о ее исправности.

Для индикации «0» или «1» достаточно двух светодиодов. Поэтому светодиодные логические пробники имеют простую конструкцию. Для сборки простейшего логического пробника понадобятся:

  • 2 транзистора VT1 и VT2 n-p-n структуры;
  • 2 светоизлучающих диода;
  • несколько резисторов.

На транзисторах собирают 2 усилительных каскада с общим эмиттером. Усилительные каскады должны иметь непосредственную связь. В цепь коллектора транзисторов включают светодиоды красного и зеленого цвета.

Читайте также:  Тока бока лайф школа

Схема логического пробника

Логический пробник работает следующим образом:

  1. При подаче логической единицы на вход пробника открывается транзистор VT1 и загорается красный светодиод. При этом VT2 оказывается запертым и зеленый светодиод не горит.
  2. При подаче на вход логического нуля VT1 запирается, при этом открывается транзистор VT2 и загорается зеленый LED.

Если на выходе проверяемого устройства с большой скоростью чередуются логические «0» и «1», то визуально будет казаться, что оба светодиода горят одновременно.

Рассмотренный пробник можно применять для проверки устройств, собранных как на микросхемах ТТЛ логики, так и на КМОП-микросхемах. При использовании прибора его питают от проверяемой схемы.

Как изготовить эвуковой пробник электрика своими руками?

У некоторых запасливых любителей в «арсенале» можно найти множество полезных вещей, в том числе и наушник (капсюль) для телефона ТК-67-НТ.

Подойдет и другое аналогичное устройство, снабженное металлической мембраной, внутри которого расположена пара последовательно соединенных катушек.

На базе такой детали может быть собран несложный звуковой пробник.

В первую очередь нужно разобрать телефонный капсюль и отсоединить катушки друг от друга. Это нужно для того, чтобы освободить их выводы. Элементы размещаются в наушнике под звуковой мембраной, около катушек. После сборки электрической цепи мы получим вполне рабочий определитель со звуковой индикацией, который возможно применять, к примеру, в целях проверки дорожек печатных схем на взаимное перемыкание.

Схема пробника со звуковой и световой индикацией

База такого пробника – электрогенератор с индуктивной противоположной взаимосвязью, основными деталями которого является телефон и транзистор малой мощности (лучше всего германиевый). Если такого транзистора у вас нет, то можно воспользоваться другим, обладающим проводимостью N-P-N, однако в этом случае полярность включения источника электропитания следует поменять. Если включить генератор не получается, выводы одной (любой) катушки нужно поменять между собой местами.

Увеличить громкость звука можно, выбрав частоту электрогенератора таким образом, чтобы она была максимально приближена к резонансной частоте наушника. Для этого мембрану и сердечник нужно расположить на соответствующем расстоянии, изменяя интервал между ними до получения нужного результата. Теперь вы знаете, как сделать индикатор напряжения на базе телефонного наушника.

Наглядно изготовление и использование простейшего пробника напряжения на видео:

Индикатор напряжения на двухцветном светодиоде

Еще одна популярная схема индикации, это схема с использованием двухцветного светодиода для отображения степени заряда батареи или же сигнализации о включении или выключении лампы в другом помещении. Это может быть очень удобно, например, если выключатель света в подвале расположен до лестницы ведущей вниз (кстати, не забудьте прочитать интересную статью о том как сделать подсветку лестницы светодиодной лентой).

До того как спуститься туда, вы зажигаете свет, и индикатор загорается красным, в выключенном состоянии вы видите зеленое свечение на клавише. В этом случае вам не придется заходить в темную комнату и уже там нащупывать выключатель. Когда вы покинули подвал, вы по цвету светодиода знаете, горит свет в подвале или нет. Одновременно с этим, вы контролируете исправность лампочки, потому что в случае ее перегорания, красным светодиод светиться не будет. Вот схема индикатора напряжения на двухцветном светодиоде.

схема индикатора напряжения на двухцветном светодиоде

В заключении можно сказать, что это лишь основные возможные схемы использования светодиодов для индикации напряжения. Все они несложные, и в своей реализации под силу даже дилетанту. В них не использовалось никаких дорогостоящих интегральных микросхем и тому подобное. Рекомендуем обзавестись таким устройством всем любителям и профессионалам электрикам, чтобы никогда не подвергать свое здоровье опасности, приступая к ремонтным работам, не проверив наличие напряжения.

Вариант для автомобиля

Схема для автомобиля

Простая схема для индикации напряжения бортовой сети автомобиля и заряда аккумулятора. Стабилитрон ограничивает ток аккумулятора до 5В для питания микросхемой логики.

Переменные резисторы позволяют выставить уровень напряжения для срабатывания светодиодов. Настройку лучше проводить от сетевого стабилизированного источника питания.

Детектора наличия опасного для жизни напряжения, изготовление

Выполнен прибор на трех транзисторах, без платы навесным монтажом.
Бесконтактный детектор высокого напряжения своими руками
Обратите внимание, что в схеме используются транзисторы разной структуры. Требований к ним особых нет, подойдут практически любые. В качестве элементов сигнализации используются светодиод и зуммер. Роль антенны играет кусок провода, длиной 5 см.
Бесконтактный детектор высокого напряжения своими руками
Питается детектор от двух мизинчиковых элементов.
Бесконтактный детектор высокого напряжения своими руками
Корпусом служит прозрачная пластиковая трубка.
Бесконтактный детектор высокого напряжения своими руками
После сборки, если все элементы схемы исправны, детектор начинает работать сразу и в настройке не нуждается.

Нюансы в работе индикатора напряжения

Собранный своими руками светодиодный индикатор, так же как и промышленные приборы данного типа, может применяться для проверки наличия напряжения. Измерительным прибором он не является, а лишь указывает на наличие или отсутствие напряжения. Приобретя некоторый опыт работы с указателем, можно по яркости свечения светоизлучающего диода определить величину напряжения между двумя проводниками. Однако для точных измерений нужно применять стрелочные или цифровые вольтметры.

В отличие от указателей с газоразрядными лампами светодиодный индикатор нельзя применять для поиска «фазы», прикасаясь к одному из щупов пальцем. Прибор имеет малое внутреннее сопротивление, и такой способ поиска фазного проводника грозит поражением электрическим током.

Выводы

Самостоятельно делают индикаторы по простым схемам. Никакие другие дорогостоящий детали не требуются. Для изготовления пробника можно использовать корпус высохшего маркера или неисправного мобильного телефона. На лицевую часть можно вывести щуп в виде штыря, на торец – кабель, оснащенный зажимом-«крокодильчиком» или щупом.

Смотрите видео

  • https://simplelight.info/raznoe/indikator-napryazheniya-na-svetodiodah.html
  • http://ledno.ru/svetodiody/samodelki/indikator-napryazheniya-220v.html
  • https://SvetodiodInfo.ru/texnicheskie-momenty/indikator-napryazheniya-na-svetodiodax.html
  • https://YaElectrik.ru/elektroprovodka/indikator-napryazheniya-svoimi-rukami
  • https://SdelaySam-SvoimiRukami.ru/5717-beskontaktnyj-detektor-vysokogo-naprjazhenija-svoimi-rukami.html
  • https://svetilnik.info/svetodiody/indikator-napryazheniya-na-svetodiodah.html

Как сделать индикатор напряжения на светодиодах

Индикатор напряжения на DIN-рейку

Указатель напряжения до 1000в

Работа с индикаторной отверткой (индикаторный пробник) для поиска напряжения

Источник

Индикатор потребляемого тока или мощности

Предлагаемое устройство предназначено для световой индикации потребляемого тока (и соответственно мощности) нагрузкой, подключённой к осветительной сети 220 В. Его включают в разрыв одного из сетевых проводов. Особенности устройства — отсутствие какого-либо дополнительного источника питания и гальваническая развязка от сети. Этого удалось добиться применением светодиодов повышенной яркости свечения и трансформатора тока.

Рис. 1

Когда ток нагрузки протекает через первичную обмотку трансформатора Т1, во вторичной возникает переменное напряжение, которое выпрямляют оба выпрямителя. Индикатор настроен так, что при токе нагрузки менее 0,5 А напряжения на выходах выпрямителей недостаточно для свечения светодио-дов. Когда ток превысит это значение, начнётся слабое, но заметное свечение светодиода HL1 (красного цвета). По мере роста тока нагрузки выходной ток выпрямителя также возрастает. Если ток нагрузки достигнет 2 А, включится светодиод HL2 (зелёного цвета), при токе более 3 А светится HL3 (синего), а когда ток превысит 4 А, начнёт светить белый светодиод HL4. Эксперименты показали, что индикатор работоспособен до тока нагрузки 12 А, для бытовых условий этого вполне достаточно, при этом ток через светодиоды не превышает 15. 18 мА.

Читайте также:  Что представляет собой переменный электрический ток это

Рис. 2

Все элементы индикатора, кроме трансформатора, установлены на печатной плате из фольгированного с одной стороны стеклотекстолита, чертёж которой показан на рис. 2. В устройстве применены подстроечные резисторы СПЗ-19, конденсаторы — оксидные импортные, диоды можно использовать любые маломощные выпрямительные, светодиоды — обязательно повышенной яркости свечения.

Трансформатор тока изготовлен из понижающего трансформатора малогабаритного блока питания (120/12 В, 200 мА). Активное сопротивление первичной обмотки — 200 Ом. Обмотки этого трансформатора намотаны в отдельных секциях, что упрощает доработку. Его первичная обмотка станет вторичной обмоткой трансформатора тока Т1, а вторичную удаляют и взамен неё наматывают провод первичной обмотки. Для указанных выше параметров индикатора число витков первичной обмотки — три, провод должен быть в надёжной изоляции и рассчитан на сетевое напряжение и ток, потребляемый нагрузкой. Для изготовления трансформатора также подойдёт любой маломощный серийный понижающий трансформатор, например, из серий ТП-121,ТП-112.

Для градуировки шкалы индикатора можно применить амперметр переменного тока и понижающий трансформатор с напряжением вторичной обмотки 5. 6 В и током до нескольких ампер. К этой обмотке последовательно подключают налаживаемое устройство, амперметр и нагрузку — переменный резистор сопротивлением 10. 15 Ом и мощностью 25 Вт. Изменяя сопротивление нагрузочного резистора, устанавливают требуемый ток и подстроечными резисторами добиваются зажигания соответствующего этому току свето-диода.


Рис. 3

Источник

Светодиодный индикатор тока сети

Светодиодный индикатор тока сетиПредлагаемое несложное устройство предназначено для индикации тока, потребляемого нагрузками, работающими в сети 220 В. Индикация осуществляется с помощью трёх светодиодов.

Устройство предназначено для дискретной индикации тока, потребляемого нагрузками, работающими в сети переменного тока 220 В. Индикация осуществляется с помощью трёх светодиодов, сигнализирующих о том, что потребляемый нагрузками ток превысил заданные для них значения включения. Благодаря компактным размерам, малому потреблению электроэнергии, малым потерям мощности в цепи 220В, может быть легко встроено в сетевую электророзетку, удлинитель-разветвитель, автоматический термо/электромагнитный выключатель. Индикация потребляемого тока от сети 220 В позволяет отследить не только наличие большого тока в цепи питания сетевых устройств, что может быть опасным для электропроводки, электророзеток, но и быстро зафиксировать случившийся пробой обмоток электродвигателей или повышенную механическую нагрузку на используемый электроинструмент.

Светодиодный индикатор тока сети - схема

Датчик потребляемого тока выполнен на самодельных герконовых реле К1 — КЗ, обмотки которых содержат разное количество витков, следовательно, контакты герконов будут замыкаться при разных значениях тока, протекающего через обмотки. В этой конструкции обмотка реле К1 имеет большее количество витков, следовательно, контакты геркона К1.1 будут замыкаться раньше контактов других герконов. При потребляемом нагрузками токе более 2 А, но меньше 4 А будет светиться только светодиод HL1. При замкнутых контактах К1.1, но разомкнутых контактов остальных герконов, ток питания светодиода HL1 будет протекать по диодным цепочкам VD9 — VD12 и VD13 — VD16. При увеличении потребляемого тока более 4 А начнут замыкаться контакты геркона К2.1, совместно со светодиодом HL1 будет светить светодиод HL2. При разомкнутых контактах геркона КЗ ток питания светодиодов HL1, HL2 будет протекать через диодную цепочку VD13 — VD16. Обмотка реле КЗ содержит наименьшее количество витков, число которых подобраны так, чтобы контакты геркона К3.1 замыкались при токе нагрузки более 8 А, что соответствует потребляемой нагрузкой от сети мощности около 1760Вт. Диодная цепочка VD5 — VD8 предотвращает неконтролируемый рост напряжения на обкладках конденсатора С2 при разомкнутых контактах герконов, для этой же цели служат и последовательно включенные диоды VD9 — VD16. Поскольку светодиоды в этой конструкции включены последовательно, то это дало возможность установить конденсатор С1 небольшой ёмкости, это делает конструкцию более экономичной, что актуально, поскольку весьма вероятна возможность её круглосуточной эксплуатации. Благодаря тому, что обмотки самодельных герконовых реле содержат малое количество витков, нагрев обмоток практически отсутствует при токе нагрузки до 12. 16 А, на нагрузку поступает полное напряжение питания. Узел светодиодного индикатора тока получает питание от бестрансформаторного источника напряжения постоянного тока, выполненного на балансном конденсаторе С1, токоограничительных резисторах R1, R2, мостовом диодном выпрямителе VD1 -VD4. Конденсатор С2 сглаживает пульсации выпрямленного напряжения.

Все детали устройства кроме светодиодов могут быть смонтированы на печатной плате размерами 55×55 мм, рис.2. Светодиоды подсоединяют с помощью гибких многожильных проводов необходимой длины в ПВХ или фторопластовой изоляции. Все печатные дорожки, по которым протекает ток подключенной нагрузки, усилены медным одножильным проводом диаметром 1,2 мм, припаянным к дорожкам большим количеством припоя. Контакты герконов К1.1, К2.1 припаяны к печатным дорожкам тонкими гибкими проводами в ПВХ изоляции. В индикаторе тока использованы герконы типа КЭМ-2 со свободно разомкнутой группой контактов. Длина такого геркона около 21 мм, диаметр около 3,2 мм. Катушки герконов намотаны обмоточным проводом диаметром 0,82 мм в один ряд. Чтобы не раздавить стеклянный корпус геркона, витки обмоток удобнее формировать на гладкой части стального сверла диаметром 3,2. 3,3 мм. Расстояние между витками провода около 0,5 мм. Катушка реле К1 содержит 11 витков, катушка реле К2 — 6 витков, катушка реле КЗ — 4 витка. Ток срабатывания контактов реле зависит не только от количества витков катушки, но и от конкретного экземпляра геркона и места расположения катушки на баллоне геркона, когда катушка расположена посередине корпуса геркона, чувствительность максимальная. Резисторы можно применять любого типа общего применения, например, МЛТ, РПМ, С1-4, С2-22, С2-23. Конденсатор С1 плёночный на рабочее напряжение постоянного тока 630 В, например, типа К73-17, К73-24, К73-29 или импортный на рабочее напряжение 275 В переменного тока. Вместо одного конденсатора на 630 В 0,047 мкФ при его отсутствии можно установить два аналогичных на напряжение 250 В ёмкостью 0,1 мкФ, включенных последовательно. Конденсатор С2 типа К50-35, К50-68, К53-19 или импортный аналог. Диоды 1N4148 можно заменить любыми из 1 N914, 1SS176, 1SS244, КД510, КД521, КД522. Вместо трёх цепочек последовательно включенных диодов VD5 — VD8, VD9 — VD12, VD13 — VD16 можно установить по одному маломощному стабилитрону, например, BZV55C-2V7, TZMC-2V7, при этом, выводы катодов стабилитронов должны быть подключены к выводам анодов соответствующих светодиодов. Светодиоды АЛ307КМ красного цвета свечения можно заменить любыми аналогичными с прямым рабочим напряжением не более 2,0 В при токе 20 мА, например, АЛ307 Л-М, КИПД66Т-К, КИПД66Е2-К, КИПД24Н-К, L-63SRC, DB5-436DR, RL50-UR543. Все эти светодиоды красного цвета свечения. При применении аналогичных светодиодов жёлтого или зелёного цвета свечения из упомянутых серий может потребоваться вместо 4 последовательно включенных диодов в соответствующих цепочках устанавливать по 5 диодов. Предпочтительнее устанавливать светодиоды с повышенной светоотдачей.

Читайте также:  Переменный ток группа в контакте

Светодиодный индикатор тока сети 220В - печатная плата

Изменяя число витков катушек самодельных герконовых реле, можно подобрать другие пороговые значения индикации предельного тока подключенных нагрузок, при которых будут зажигаться светодиоды. Для небольшой коррекции тока срабатывания можно изменять положение катушки на корпусе соответствующего геркона. После настройки катушки герконовых реле фиксируются каплями любого полимерного клея, например, «Момент».

Источник



Простой индикатор протекающего переменного тока

Нередки задачи — определить наличие протекающего в цепи переменного тока сетевого напряжения. Индикаторы напряжения – лампочки или светодиоды, подключенные параллельно нагрузке могут указать только на приложенное напряжение, но не на протекание тока. Они просты, дешевы и компактны но малоинформативны. Такой индикатор тока может быть применен для дистанционного определения невыключенных приборов в удаленных помещениях, для индикации работоспособности особо ответственных электрических цепей.

Естественной и логичной идеей будет установить в разрыв цепи резистор и использовать падение напряжения на нем для свечения маломощного индикатора, лампочки или светодиода. Однако расчеты показывают, что резистор придется взять изрядной мощности, он будет сильно греться, падение напряжения на нем – практически бесполезная трата энергии. Например. Имеем три независимых проволочных нагревателя (3 фазы), каждый мощностью 500 Вт. Нужно во время работы печи иметь представление о целостности каждого. Вспомнив, что I=P/U выясним, что в цепи каждого нагревателя протекает ток 2.3 А. Чтобы получить падение напряжения на резисторе 5 вольт (для зажигания светодиода), придется рассеять на этом резисторе более 10 Вт. Т.е. мощность резистора должна быть несколько выше расчетной (габариты, масса), нагрев элемента предполагает его специальную установку – неплавящуюся изоляцию, вентиляцию и.т.д. Кроме того, как уже говорилось – теряем 5 вольт от, хорошо если 220.

Итак, последовательно включенный резистор применять неудобно. Существующие схемы индикаторов тока с цепочкой мощных диодов ничем не лучше, кроме прочего, придется учитывать и допустимые токи через диоды.

Значительно лучшими эксплуатационными показателями обладает трансформаторный датчик. Сопротивление его измерительной обмотки ничтожно, никакого нагрева, потери минимальны. Да, он дороже стоит (как все моточные изделия), больше весит. К счастью, кустарное техническое творчество не предполагает серийного производства с высокой окупаемостью. В качестве датчиков можно применить доработанные маломощные сетевые трансформаторы из старой износившейся или морально устаревшей бытовой техники. Здесь были применены трансформаторы питания от импортных пластиковых переносных кассетных магнитофонов с FM радио. Небольших размеров, моно, невысокого класса. Подобрал три почти одинаковых трансформатора. Еще один источник миниатюрных сетевых трансформаторов – старые сетевые «адаптеры» в небольшом корпусе-вилке. Старые их модели часто были с низкочастотным трансформатором.

Что понадобилось для изготовления.

Набор инструмента для электромонтажа, паяльник с принадлежностями, мультиметр, фен технический для работы с термотрубками. Набор инструментов для мелкой слесарной работы, измерительный инструмент, ножницы по металлу, дрель электрическая или шуруповерт со сверлами, пара струбцин для гнутья, мелочи.

Доработка облегчилась благодаря удачной конструкции трансформаторов – в них обмотки расположены рядом, на сборном пластиковом каркасе (технологичность изготовления), а не поверх друг друга (выше эл. параметры). Доработка свелась к перемотке вторичной, низковольтной обмотки. Из-за особенности конструкции трансформаторов удалось сделать это без муторной сборки-разборки проклеенного сердечника из Ш-пластин.

Удалив внешнюю изоляцию вторичной обмотки, выяснил направление намотки провода. Отметил его спиртовым фломастером на магнитопроводе трансформатора.

Спилив выступающие части катушки ножовкой по металлу, вытолкнул, выбил внутренние ее части, удалил остатки изоляции, острым ножом срезал пластиковые заусенцы.

Намотал (продел в окно) провод новой вторичной обмотки. Для потребляемой мощности 500 Вт (2.3 А) применил гибкий монтажный провод сечением 0,5 мм2 в хорошей силиконовой изоляции. Без особенного труда влезло 3.5 витка.

При протекании указанного тока через измерительную обмотку, на высоковольтной обмотке получается около 90 вольт. Для индикации применил маленькую неоновую лампочку импортного производства, последовательно с токоограничивающим резистором. Резистор подобрал по яркости (не максимальной, но удобной) свечения. Получилось около 500 кОм.

В своем родном применении трансформаторы удерживались только специальным пластиковым крепежом — элементами корпуса. Этаким специальным гнездом. Здесь, для надежного крепления пришлось сделать хрестоматийные металлические обоймы. Для их изготовления применил оцинкованную сталь толщиной 0,45 мм.

Вычертил эскиз с размерами, с учетом поправок на сгибы. Перенес разметку на подходящий кусок листового материала. В углах сгибов накернил и просверлил тонким сверлом отверстия (не будет складки), зенковал отверстия крупным сверлом. Вырезал развертку ножницами по металлу.

Для сгибания развертки зажал ее на краю ровной железки – станины самодельного токарного станка по дереву. Прижал подходящей деревяшкой, то, что должно быть отогнуто выступает. Легкими ударами резиновой киянки отогнул лепестки, перевернул заготовку, отогнул лепестки на второй стороне. Остальное легко и точно сгибается руками.

Сердечник трансформатора набирается из отдельных изолированных друг от друга пластин, чтобы поумерить вредный его нагрев из-за вихревых токов (тов. Фуко), замыкать их нельзя. Для изоляции жестяной обоймы от магнитопровода потребуется еще одна аналогичная деталь из плотной бумаги. Применил ватманскую. Линии сгиба предварительно частично прорезаются или лучше – проминаются тупым ножом или чем-то подобным.

Датчик тока в сборе.

Два из трех датчиков тока в блоке управления трехфазным нагревателем печи. Индикаторные лампочки вынесены на переднюю панель, токоограничивающие резисторы смонтированы вместе с отходящими проводами, затянуты в термотрубку и скреплены вместе с остальным монтажом нейлоновыми ремешками и пластиковой спиралью.

Для размещения отдельного датчика тока вместе с индикатором, например, для сигнализации о невыключенном электроприборе в удаленном помещении удобно будет применить подходящую стандартную электрическую коробку.

Источник