Меню

H20 электрический ток разложение

Электролиз воды

Вообще, электролиз — это процесс, в котором постоянный электрический ток, пропускаемый через ионизированный раствор или расплав вещества (электролит), используется для инициирования химической реакции на электродах (положительно заряженном аноде + и отрицательном катоде — ), приводящей к диссоциации вещества на положительные ионы-катионы на стороне катода и отрицательные ионы-анионы на стороне анода. При электролизе воды, при прохождении через нее постоянного электрического тока, на стороне анода происходит диссоциация воды с образованием молекул кислорода O2 и выделением положительно заряженных ионов водорода H + и имеющих отрицательный заряд электронов e — . На катоде — , ионы водорода H + принимают электроны, образуя газообразный водород H2:
Анод: 2H2O → O2 + 4H + + 4e —
Катод: 4H + + 4e — → 2H2

В целом, реакцию диссоциации при электролизе воды можно записать следующим образом:
2H2O → 2H2 + O2

Электролит

Вышеописанный электролиз чистой воды без чрезмерных затрат энергии проходит очень медленно или не проходит совсем. Для того, чтобы эффективно проводить элетролиз воды, в нее добавляют электролит — или растворимый в воде, или твердый — увеличивающий электрическую проводимость воды.

При выборе электролита необходимо, чтобы между катионами (положительно заряженными ионами) электролита и катионами, которые может отдать вода, то есть H + , не было конкуренции — иначе, не будет произведен водород. Для этого, катион электролита должен иметь меньший электродный потенциал, чем катион H + (стандартный электродный потенциал E°В=0); на роль катиона подходят Li + , Rb + , K + , Cs + , Ba 2+ , Sr 2+ , Ca 2+ , Na + , and Mg 2+ . Чаще всего, используются электролиты с катионами
Li + : -3,0401
K + : -2,931 и
Na + : -2,71

Также, в роли электролита можно рассматривать и кислоты, т.к. при их диссоциации образуется ион H + , как и при диссоциации воды — и конкуренции между ними нет.

Так же, для исключения конкуренции аниона (отрицательно заряженного иона) электролита и гидроксильного иона OH — анион электролита должен иметь больший электродный потенциал, чем анион OH — , E°(В) = . Обычно, в качестве электролита используется щелочь, то есть, анионом является тот же самый гидроксильный ион OH — , но если используется кислота с катионом H + , то в качестве аниона обычно используется сульфатный ион SO4 2- , имеющий при окислении до S2O8 стандартный электродный потенциал -2,01 В.

Обычно, в качестве электролита для электролиза воды используются сильные щелочи: гидроксид калия KOH и едкий натр NaOH. Иногда, используется сильная кислота, как правило, серная кислота H2SO4.

Протоннообменные мембраны

Кроме растворов электролитов, для элетролизного производства воды могут использоваться и твердые электролиты, например Nafion — фторполимерный материал, обладающий способностью проводить катионы, то есть, в данном случае ионы H + , иначе назваемые протонами. Электролитические мембраны на основе нафиона получили название протоннообменных мембран.

Еще одни способо электролиза воды является электролиз при помощи твердого оксида.

Источник

ЭЛЕКТРОЛИЗ ВОДЫ — КАК ОН ЕСТЬ

Еще раз про Н2О
К ак уже говорилось, впервые химический состав воды был определен французским химиком Лавуазье в 1784 году. Лавуазье вместе с военным инженером Мёнье, прогоняя пары воды над раскаленным листом железа, обнаружил, что вода разлагается, выделяя при этом водород и кислород. Да, конечно, для своего времени, для эпохи «упорядочения вещей», эти выводы имели большое значение. В самом деле, ведь до этого открытия вода считалась совершенно однородным веществом. Нельзя, однако, не отметить и другого: открытие это сыграло и свою вполне очевидную отрицательную роль, так как надолго отвлекло внимание других ученых от поисков в этой области и утвердило в умах многих поколений непогрешимость данного вывода, освященного к тому же авторитетом ученого.
Но, что условия, при которых он проводился, были настолько несовершенны, были «грязны».
Чего стоит одно только наличие железа, над которым пропускались пары воды. Оно способно внести такие моменты в опыт, которые даже трудно учесть наперед. Лавуазье с партнером зафиксировали в своем опыте то, что было наиболее очевидным: выделение двух газов — водорода и кислорода, а что было сверх того, на это они и вовсе не обратили внимание, скорее всего по той причине, что это «сверх того» не было столь очевидным, как выделение двух газов.
Поскольку до этого открытия общим мнением, господствовавшим в науке, было мнение, что вода яв­ляется однородным веществом, факт открытия ее не­однородного состава можно назвать революцион­ным. Чего еще можно было требовать от первооткры­вателей! К тому же очевидность результатов опыта была слишком подкупающей.
Старый взгляд на воду был отброшен и заменен новым представлением о во­де как соединении двух элементов — водорода и кис­лорода, которое быстро утвердилось в науке. Этому способствовало в значительной мере развитие элект­рохимии.

ЭЛЕКТРОЛИЗ по Дэви
Р ядом ученых (Никольсон, Кавендиш и др.) был проведен опыт по электрохимическому разложению воды (подобное оп­ределение данного процесса совершенно ошибочно). Под словом «разложение» надо понимать электролиз воды как сложный окис­лительно-восстановительный процесс, но отнюдь не как простое разложение воды на составляющие эле­менты.
Итак, при разложении, т.е. электролизе воды вы­делялись водород и кислород, что, казалось бы, внешним образом подтверждало вывод Лавуазье. Однако при этом «черный ящик» стал неожиданно выдавать дополнительную информацию, которой прежде не было. В процессе электролиза обнаружи­лось два странных явления: во-первых, обе состав­ные части воды выделялись не вместе, а отдельно друг от друга — кислород у одного электрода, водо­род — у другого; во-вторых, наблюдалось образова­ние кислоты у кислородного полюса и щелочи у во­дородного. Это «странное» разложение воды озада чило ученых; притом их больше беспокоила вторая «странность», т.е. появление кислоты и щелочи.

Читайте также:  Дроссель как фильтр тока

Не видя каких-либо явных источников появле­ния в опытах азота, Дэви предположил, что образо­вание азотной кислоты было обязано соединению водорода и кислорода в момент их выделения с азо­том воздуха, растворенным в воде. Для подтвержде­ния своей догадки, он проделал тот же опыт под ко­локолом воздушного насоса, из которого он выкачал воздух (как он пи ш ет сам: осталась лишь 1/64 его первоначального объема). В итоге получились сле­дующие обнадеживающие для него результаты: в ка­тодном сосуде вода вовсе не обнаруживала присут­ствия щелочи, в анодном сосуде лакмусовая бумаж­ка слабо окрасилась в красный цвет, что свидетель­ствовало об образовании там небольшого количест­ва кислоты. Казалось, его догадка подтверждалась. Чтобы уже окончательно убедиться в своей правоте, Дэви еще раз повторил свой опыт под колоколом, но теперь уже в атмосфере чистого водорода. При этом для большей чистоты опыта он дважды на­полнял колокол водородом, чтобы удалить всякие остатки воздуха. Итоги опыта превзошли все ожида­ния: ни в одном из сосудов не было обнаружено да­же следов щелочи и кислоты. Эти опыты не остави­ли у Дэви никаких сомнений в том, что образование кислоты и щелочи у электродов — явление случай­ное и не связано с химическим составом воды, а обя­зано лишь присутствию воздуха, в котором, как изве­стно, содержится азот. Они убедили не только Дэви, но и многие поколения химиков после него. После этих опытов было уже как бы неприлично возвра­щаться вновь к вопросу о химическом составе воды — всем все стало ясно.

Вода «под пыткой» у Дэви
А действительно ли в опытах Дэви все было так безу­коризненно чисто и хорошо? Рассмотрим опыт Дэви по элек­тролизу воды под колоколом воздушного насоса. По­чему в этом опыте образовалось лишь небольшое ко­личество кислоты в анодном сосуде и не было вовсе обнаружено щелочи в сосуде катодном? Действи­тельно ли, как думал Дэви, это было связано с отсут­ствием воздуха, выкачанного из-под колокола? От­части да, но совершенно в другом смысле, нежели он предполагал. Начать с того, что Дэви допустил серь­езную ошибку в своем первоначальном предположе­нии, что причиной образования кислоты и щелочи являлся азот воздуха. Образование кислоты и щело­чи к азоту воздуха никакого отношения иметь не могло по той простой причине, что азот в обычных условиях химически не активен, не растворяется в воде и не вступает в реакции ни с кислородом, ни с водородом. Один этот факт должен был бы на­толкнуть на поиски иных источников образования кислоты и щелочи. Позже, правда, высказывалось предположение, что образование кислоты и щелочи в опытах было, возможно, вызвано присутствием в воздухе некоторого количества аммонийных солей. Этим объяснением и удовлетворились. Однако вряд ли можно всерьез принимать данное объяснение, так как, во-первых, оно было сделано постфактум и, во- вторых, даже если бы какое-то количество таких со­лей и впрямь присутствовало, то оно настолько должно было быть мало, что не могло оказывать по­стоянного и закономерного образования кислоты и щелочи в каждом опыте, количество которых стоя­ло, как говорилось, лишь в прямой зависимости от продолжительности проводимых опытов.

Итак, множество фактов биологического, химиче­ского и физического свойства не дает оснований при­знать существующую формулу воды верной. Против нее говорят не только эмпирические факты, но и тео­ретические положения и, прежде всего, те, которые вытекают из таких фундаментальных положений, ка­ковыми являются начала термодинамики . Именно с ними совершенно не согласуется взгляд на электро­лиз воды как на процесс простого разложения воды.

Источник

Расчет количества электричества, необходимое для электрохимического превращения одного эквивалента вещества

Задача 700.
Сколько времени потребуется для полного разложения 2 молей воды током силой 2 А?
Решение:
Для расчета времени используем уравнение закона Фарадея:

 уравнение Фарадея

Здесь m — масса образовавшегося или подвергшегося превращению вещества; Э — его эквивалентная масса; I — сила тока; t — время; F — постоянная Фарадея (96500 Кл/моль), т.е. количество электричества, необходимое для осуществления электрохимического превращения одного эквивалента вещества.

Решим уравнение закона Фарадея относительно времени и подставим данные задачи (m = M . n = 18 . 2 = 36,
I = 2A, Э = М/2 = 18/2= 9 г/моль):

 уравнение Фарадея

Ответ: 53,61ч.

Задача 701.
Как электролитически получить LiОН из соли лития? Какое количество электричества необходимо для получения 1 т LiОН? Составить схемы электродных процессов.
Решение:
Электролитически гидроксид лития можно получить из соли литя при электролизе её водного раствора. Например, при электролизе раствора соли LiCl. Стандартный электродный потенциал системы Li + + 1 = Li 0 (-3,045 В) значительно отрицательнее потенциала водородного электрода в нейтральной среде (-0,41 В). Поэтому на катоде будет происходить электрохимическое восстановление воды, сопровождающееся выделением газообразного водорода ионы лития будут накапливаться в катодном пространстве:

Читайте также:  Как восстановить дыхание человека пораженного электрическим током кратко

На аноде будет происходить электрохимическое окисление хлора, стандартный потеннциал которого (+1,36 В) выше, чем воды (+1,23 В). Хлор будет окисляться, потому что наблюдается значительное перенапряжение процесса окисления воды, материал анода оказывает тормозящее воздействие на его протекание:

2Cl — + 2 = 2Cl*; Cl* + Cl* = Cl2↑.

Сложив уравнения катодного и анодного процессов, получим суммарное уравнение:

2H2O + 2Cl — = H2↑ + 2OH — + Cl2↑.
у катода у анода

Таким образом, одновременно с выделением газообразного водорода (катод) и газообразного хлора (анод), образуется гидроксид лития (катодное пространство).

Количество электричества (Q = It) находим по формуле:

 уравнение Фарадея

Здесь Э – эквивалентная масса серебра; F – постоянная Фарадея (96500 Кл/моль), т. е. количество электричества, необходимое для осуществления превращения одного эквивалента вещества; t – время, с; I – сила тока; m – масса выделившегося вещества.

 уравнение Фарадея

Ответ: 4 . 109 Кл.

Задача 702.
Найти объем кислорода (условия нормальные), который выделится при пропускании тока силой 6 А в течение ЗО мин через водный раствор КОН.
Решение:
При вычислении объемов выделившихся газов представим уравнение закона Фарадея в следующей форме:

 уравнение Фарадея

Здесь V — объем выделившегося газа, л; VЭ — его эквивалентный объем, л/моль;
F — число Фарадея (96500 Кл/моль); t – время (для данного процесса равно 30 . 60 = 1800 с). Поскольку при нормальных условиях эквивалентный объем кислорода равен 5,6 л/моль, то получаем:

 уравнение Фарадея

Ответ: 627мл.

Задача 703.
Найти объем водорода (условия нормальные), который выделится при пропускании тока силой в 3 А в течение 1 ч через водный раствор Н2SO4.
Решение:
При вычислении объемов выделившихся газов представим уравнение закона Фарадея в следующей форме:

 уравнение Фарадея

Здесь V — объем выделившегося газа, л; VЭ — его эквивалентный объем, л/моль; F — число Фарадея
(96500 Кл/моль); t – время (для данного процесса равно 60 . 60 = 3600 с). Поскольку при нормальных условиях эквивалентный объем водорода равен 11,2 л/моль, то получаем:

 уравнение Фарадея

Ответ: 1,25л.

  • Вы здесь:
  • Главная
  • Задачи
  • Химия-Глинка
  • Энергетические схемы образования молекул | Задачи 243- 245

Источник



Как происходит процесс разложения воды электрическим током

Чистая, дистиллированная вода почти совершенно не проводит электрического тока.

Она обладает огромным сопротивлением. Например, сопротивление кубического сантиметра дважды перегнанной воды равно сопротивлению медной проволоки сечением в квадратный миллиметр, длина которой равна примерно 200 тысячам километров. Таким количеством проволоки можно больше чем 20 раз соединить между собой Москву и Владивосток. Для электролиза дистиллированная вода не годится. Нужна такая вода, которая бы хорошо проводила электрический ток, то есть была бы электропроводной.

Чтобы сделать воду электропроводной, в ней нужно растворить какую-нибудь соль, кислоту или основание, которые дают ионы.

Большинство химических соединений, растворяясь в воде, распадаются на части, которые приобретают при этом тот или иной заряд. Образующиеся заряженные частицы называются ионами, а разложение вещества на ионы — электролитической диссоциацией.

Обыкновенная поваренная соль (NaCl) при растворении в воде распадается на ион натрия (Na + ), заряженный положительно, и ион хлора (Сl — ), заряженный отрицательно. Ионы натрия и хлора, имеющие только по одному заряду, называются одновалентными ионами. Ионы, которые имеют два или три заряда, называются двух- или трехвалентными. В качестве примера двухвалентного иона можно привести ион кальция (Са). Хлористый кальций (СаСl2), диссоциируя на ионы, дает два одновалентных отрицательных иона хлора (2Сl) и один двухвалентный ион кальция (Са), заряженный положительно. Треххлористое железо (FeCl3) при диссоциации на ионы дает три одновалентных отрицательных иона хлора (3Сl — ) и один трехвалентный положительный ион железа (Fe +++ ).

Итак, при электролитической диссоциации соли образуются отрицательно заряженные ионы, которые называются анионами, и положительно заряженные ионы — катионы.

Кислоты при диссоциации образуют положительно заряженный ион водорода и отрицательно заряженный кислотный остаток. Серная кислота (H2SO4) распадается на два положительно заряженных иона водорода (2Н + ) и кислотный остаток — анион (SO4 — ), обладающий двумя отрицательными зарядами.

Щелочи при диссоциации образуют положительный ион металла и отрицательный ион гидроксила. Положительные и отрицательные ионы, образующиеся при растворении в воде солей, кислот и оснований, переносят через раствор электрический ток.

Если в раствор, содержащий ионы, поместить две металлические пластинки и подключить к ним постоянный ток от аккумулятора, то положительные ионы — катионы — сразу же начнут передвигаться к отрицательному электроду, который называется катодом, а отрицательные ионы — анионы — направятся к положительному полюсу — аноду. Находящиеся у электрода анионы отдадут ему свои отрицательные заряды — электроны (е) — и разрядятся. В то же самое время разрядятся и катионы, получив электроны от своего электрода. Их места тут же занимают новые ионы, и через раствор начинает проходить электрический ток. Чем больше ионов в растворе, тем лучше через него будет проходить электрический ток и тем больше электропроводность такого раствора.

Читайте также:  Электрический ток в металлах электропроводность

Чтобы получить много ионов, недостаточно растворить много вещества. Необходимо, чтобы взятая соль, кислота или основание хорошо распадались на ионы, то есть хорошо диссоциировали. Имеются такие химические соединения, которые диссоциируют очень хорошо, и почти все молекулы растворенного вещества распадаются на ионы. Но есть и такие, которые диссоциируют плохо: только очень незначительная часть всех растворенных молекул распадается на ионы, а остальные остаются в виде недиссоциированных молекул.

Отношение числа распавшихся молекул к общему числу растворенных молекул называется степенью диссоциации. Чем меньше степень диссоциации, тем хуже электропроводность раствора.

К соединениям, обладающим плохой электропроводностью, относится дистиллированная вода. Подсчитано, что из 10 миллионов молекул воды на ионы распадается только одна молекула, образуя один положительно заряженный ион водорода (Н + ) и один отрицательно заряженный ион гидроксила (ОН — ). Понятно, что при такой малой диссоциации электропроводность дистиллированной воды должна быть совершенно ничтожной и она не может быть использована для электролиза. Вот почему для получения из воды кислорода необходимо иметь подкисленную или подщелоченную воду.

Прохождение электрического тока через раствор: 1 — катод; 2 — анод; 3 — положительно заряженные ионы — катионы; 4 — отрицательно заряженные ионы — анионы.

Нам уже известно, что кислота в воде диссоциирует на ионы водорода и кислотный остаток, а щелочь — на ионы металла и ионы гидроксила. Естественно было бы ожидать, что в растворе, подкисленном серной кислотой, на катоде будут разряжаться ионы водорода, а на аноде — ионы SO4 — . Ионы водорода, разрядившись, перейдут в атомы, которые, соединяясь попарно, дадут молекулу водорода, а ионы SO4 — , отдав свой заряд электроду, перейдут в раствор в виде незаряженного кислотного остатка — радикала SO4. Соединяясь с водой, этот радикал образует серную кислоту и кислород.

Можно было бы ожидать, что в щелочных растворах ионы натрия (Na + (e) → Na) разрядятся на катоде, переходя в атомы натрия, которые, соединяясь с водой, дадут щелочь и водород (2Na + 2H2O → 2NaOH + H2). На аноде ионы гидроксила, потеряв свои электроны, соединятся попарно, образуя из радикалов воду, освобождая кислород (4OH — — 4(e) → 2H2O + O2).

Однако в действительности в кислых и щелочных растворах процесс образования кислорода и водорода происходит иначе.

Несмотря на то, что в щелочных растворах имеется очень много ионов натрия и мало ионов водорода, на катоде в первую очередь разряжаются ионы водорода.

В растворах, подкисленных серной кислотой, на аноде прежде всего разряжаются ионы гидроксила, полученные за счет диссоциации воды, а не ионы SO4 — , которых неизмеримо больше. Это объясняется тем, что разряд ионов водорода или гидроксила происходит легче, чем ионов натрия или SO4 — . Поэтому в щелочных растворах, которые обычно применяются для электролиза воды, на катоде разряжаются главным образом ионы водорода, а на аноде — ионы гидроксила. Как только эти ионы разрядятся, немедленно образуются новые ионы за счет диссоциации молекул воды.

Таким образом, при электролитическом получении кислорода и водорода расходуется только вода. Литр воды дает примерно 1360 литров водорода и 680 литров кислорода.

Электролиз воды: 1 — банка с электролитом; 2 — катод, на котором выделяется водород; 3 — анод, на котором выделяется кислород; 4 — трубка для отвода газов; 5 — чашечка с водой.

Под руководством учителя и соблюдая меры предосторожности, можно сделать опыт, показывающий, как разлагается вода.

Возьмите банку с широким горлом и наполните ее на две трети 20-процентным водным раствором щелочи. Плотно закройте банку пробкой, в которую вставлены две никелевые проволочки с небольшими пластинками на концах — электродами. В середину пробки вставьте коротким концом загнутую стеклянную трубку, через которую будут выходить газы. Второй, длинный конец трубки опустите в чашку с водой, чтобы в нее во время опыта не попадал воздух. Подключите к верхним концам электродов постоянный ток от двухвольтового аккумулятора. На электродах под раствором сразу же появятся пузырьки газа. Это кислород и водород, которые, смешиваясь, образуют гремучий газ.

Вспомним свойство этой смеси газов. Если ее поджечь, она легко взрывается.

Поэтому подходить с огнем к банке опасно.

Чтобы убедиться, что в банке образовались кислород и водород, пропустите сначала немного газа через чашечку с чистой водой, а затем поставьте вместо нее чашечку с мыльной водой.

Образуются мыльные пузыри, наполненные гремучим газом. Раздастся легкий взрыв.

В пузыре была гремучая смесь — смесь одного объема кислорода с двумя объемами водорода.

Мы пока только разложили воду, но не разделили образовавшиеся газы и не получили кислорода.

Источник: В. Медведовский. Кислород. Государственное Издательство Детской литературы Министерства Просвещения РСФСР. Ленинград. Москва. 1953

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник