Меню

Гальванических источниках постоянного тока

Источники постоянного тока

Постоянный ток — это такой ток, который почти (поскольку ничего идеального в мире нет) не изменяется во времени, ни по величине, ни по направлению. Исторически первые источники постоянного тока были исключительно химическими. Сначала они были представлены только гальваническими элементами, а позже появились и аккумуляторы.

Гальванические элементы и аккумуляторы имеют строго определенную полярность, и направление тока в них самопроизвольно не изменяется, поэтому химические источники тока — это принципиально источники постоянного тока.

Источники постоянного тока

Гальванический элемент

Пальчиковая батарейка АА — яркий пример современного гальванического элемента. Цилиндрическая щелочная батарейка ( которую любят называть алкалиновой, тогда как слово «alkaline» переводится как «щелочная») содержит внутри раствор гидроксида калия в качестве электролита. На положительном полюсе батарейки находится диоксид марганца, а на отрицательном — цинк в виде порошка.

Гальванические элементы

Когда внешняя цепь батарейки замыкается на нагрузку, на аноде (отрицательном полюсе) происходит химическая реакция окисления цинка, одновременно с этим на катоде (положительном полюсе) идет реакция восстановления оксида марганца четырехвалентного до оксида марганца трехвалентного.

В результате с отрицательного полюса электроны бегут в сторону положительного полюса через внешнюю цепь нагрузки. Так работает источник постоянного тока — гальванический элемент.

Химический процесс в гальваническом элементе не обратим, то есть пытаться заряжать его бесполезно. Напряжение между полюсами новой пальчиковой батарейки 1,5 вольта, что обусловлено потенциалами веществ, участвующих в химической реакции внутри нее.

Батарейка и лампочка

Аккумулятор

Литий-ионный аккумулятор, в отличие от батарейки, можно после разрядки снова заряжать, поскольку химический процесс в нем обратим. С виду аккумулятор работает как батарейка, то есть тоже дает в цепь нагрузки принципиально только постоянный ток, но емкость у аккумулятора обычно больше чем у батарейки примерно такого же размера.

Аккумуляторы

В ходе разрядки литиевого аккумулятора, химическая реакция на аноде (отрицательном электроде) состоит в отделении лития от углерода и его переходе в состав соли на катоде (положительном электроде). А при зарядке ионы лития вновь переходят к углероду на аноде.

Разность потенциалов между полюсами литий-ионного аккумулятора может доходить до 4,2 вольт. Максимальный ток зависит от площади взаимодействия электродов внутри аккумулятора с электролитом и соответственно друг с другом.

Генератор

В промышленных масштабах постоянный ток получают при помощи генераторов постоянного тока. Как правило, на статоре такой машины расположены неподвижные магниты либо электромагниты, наводящие во вращающихся контурах ЭДС по закону электромагнитной индукции.

Генераторы на электростанции

Вращающиеся контуры соединены каждый с контактными пластинами щеточно-коллекторного узла, через которые посредством неподвижных щеток и снимается в цепь нагрузки генерируемый ток. Поскольку контуры контактируют с положительной и отрицательной щетками только при прохождении мимо определенных магнитных полюсов статора, ток во внешней цепи получается выпрямленным переменным, то есть пульсирующим постоянным.

Величина тока зависит от сечения проводов, индукции магнитного поля статора и площади статора. Величина напряжения — от скорости вращения ротора генератора и от индукции магнитного поля статора.

Солнечный элемент

Солнечные батареи также дают постоянный ток. Фотоны солнечного света попадая на фотоэлемент вызывают движение положительно заряженных дырок и отрицательно заряженных электронов через p-n-переход, и во внешней цепи получается таким образом постоянный ток.

Солнечные элементы

Чем больше совокупная площадь фотоэлементов — тем больше электронов и дырок участвуют в образовании тока, тем больший ток можно получить от солнечной батареи. Генерируемое напряжение солнечной батареи зависит от интенсивности солнечного света и от количества соединенных последовательно фотоэлементов, входящих в конструкцию солнечной батареи.

Трансформатор с выпрямителем

Раньше в электронной аппаратуре для получения постоянного тока, при питании от бытовой сети переменного тока, сплошь и рядом использовались блоки питания с трансформаторами на железе. Переменное сетевое напряжение понижалось при помощи трансформатора, а затем выпрямлялось при помощи лампового или диодного выпрямителя.

Трансформатор с выпрямителем

После выпрямителя в такой схеме всегда стоит фильтр, состоящий как минимум из конденсатора, а в лучшем случае — из конденсатора и дросселя, да еще и транзисторного стабилизатора напряжения, особенно если источник тока должен быть регулируемым.

Напряжение на выходе такого блока питания зависит от количества витков вторичной обмотки трансформатора, а максимальная величина тока — от номинальной мощности трансформатора.

Источник питания для светодиодной ленты

Импульсный блок питания

Сегодня в радиоэлектронной аппаратуре для получения постоянного тока почти не используют блоки питания с низкочастотными трансформаторами на железе, на замену им пришли импульсные блоки питания. В них выпрямленное сетевое напряжение сначала понижается при помощи высокочастотного трансформатора и транзисторных ключей, а затем выпрямляется. Ток направляется через фильтр в конденсатор фильтра.

Импульсный блок питания

Конструкция импульсного блока питания получается гораздо меньше размером, чем с трансформатором на железе. Но шумов в выходном токе больше. Поэтому особое внимание при конструировании импульсных блоков питания уделяют фильтрации тока на выходе к нагрузке.

Напряжение на выходе импульсного блока питания зависит от устройства электронной схемы, а максимальный ток — от размера высокочастотного трансформатора и качества находящихся на схеме радиоэлектронных компонентов.

Конденсатор и ионистор

Источником постоянного электрического тока можно назвать в определенном смысле электрический конденсатор. Конденсатор накапливает электрическую энергию в форме постоянного электрического поля между своими обкладками, а затем может отдавать эту энергию в форме постоянного тока или импульсного разряда. И то и другое по сути — постоянный ток, отличающийся лишь длительностью проявления.

Ионисторы

Но электролитические конденсаторы сегодня выпускаются на огромные емкости в тысячи и более микрофарад. Особая разновидность конденсатора — ионистор (суперконденсатор) — он занимает промежуточное место между аккумулятором и конденсатором.

Химические процессы в ионисторе протекают практически с такой же скоростью как в конденсаторе, но в отличие от аккумулятора, ионистор обладает меньшим внутренним сопротивлением, что позволяет получать от ионисторов большие постоянные токи на протяжении более длительного времени. Чем больше емкость конденсатора — тем больший по величине и более продолжительный ток можно получить с его помощью.

Источник

Химические источники тока — гальванические элементы

Если отсутствует электрическая сеть, то для питания электроприборов применяют гальванические элементы и аккумуляторы, называемые иначе химическими источниками тока. Рассмотрим принцип их работы на примере первого простейшего элемента – элемента Вольта (рис. 1). Он состоит из медной (Сu) и цинковой (Zn) пластинок, опущенных в раствор серной кислоты (H2SO4). Вследствие химической реакции, происходящей между цинком и серной кислотой, на цинке образуется излишек электронов. Цинк заряжается отрицательно и является отрицательным полюсом. Раствор и медная пластинка, в него погруженная, заряжаются положительно. В результате возбуждается ЭДС, равная примерно одному вольту, которая сохраняется все время, пока цепь не замкнута.
Если замкнуть цепь, пойдет ток и внутри элемента усиленно начнет выделяться водород, покрывающий поверхность пластинок слоем пузырьков. Этот слой уменьшает напряжение на полюсах элемента. Такое явление носит название поляризации. Чем больше ток, тем сильнее поляризация и тем быстрее уменьшается напряжение элемента.

Рис.1. Простейший гальванический элемент Вольта.
Для устранения поляризации в элемент вводят вещества, способные поглощать водород и называемые деполяризаторами. Чтобы напряжение на полюсах оставалось постоянным, деполяризатор должен быстро поглощать водород, образующийся при работе элемента. Поглощая водород, деполяризатор постепенно приходит в негодность. Но обычно раньше этого портится электролит и под действием электролита разъедается цинк. Вообще электрическая энергия получается в элементе за счёт расхода цинка, электролита и деполяризатора; поэтому каждый элемент обладает определенным запасом энергии и может работать лишь ограниченное время.
Работа гальванических элементов объясняется с помощью теории электролитической диссоциации, согласно которой молекулы вещества, растворенного в воде распадаются (диссоциируют) на, ионы. Такое явление характерно для всех электролитов, представляющих собой растворы кислот, щелочей и солей. В элементе Вольта молекула серной кислоты (H2SO4) в водном растворе распадаются на отрицательный ион кислотного остатка (SO4) и положительный ион водорода (H2), что показано на рис. 2.
Химическая реакция между цинком и серной кислотой состоит в том, что положительные ионы цинка переходят в раствор, притягиваясь к отрицательным ионам электролита. При этом цинковый электрод сам заряжается отрицательно. Между ним и электролитом возникает разность потенциалов, а следовательно, и электрическое поле, которое препятствует дальнейшему переходу положительных ионов цинка в раствор. Поэтому создается некоторое равновесие с определенной разностью потенциалов между цинком и раствором. Для других металлов и растворов значение разности потенциалов будет иное.
Чтобы использовать возникшую разность потенциалов, в электролит помещают второй электрод, выполненный из другого металла. Если второй электрод – цинковый, то между ним и растворов получится такая же разность потенциалов, как у первого электрода но она будет действовать навстречу, и результирующая разность потенциалов между электродами будет равна нулю. У элементов отрицательный электрод, как правило, цинковый, а положительный электрод обычно медный или угольный.
Если соединить электроды элемента проводником, т. е. создать замкнутую цепь, то под действием разности потенциалов по внешней цепи от цинка будут двигаться электроны. Так как они уходят с цинкового электрода, то его отрицательный потенциал начинает уменьшаться и электрическое поле между ним и раствором ослабевает. Но тогда новые положительные ионы цинка переходят в раствор. Тем самым поддерживается определенный отрицательный потенциал цинкового электрода.

Рис.2. Ионы в электролите элемента Вольта.
При работе элемента непрерывно происходит растворение цинка в электролите, который постепенно превращается в раствор сернокислого цинка (ZnSO4). Положительные ионы цинка, переходящие все время в электролит, притягивают к себе отрицательные ионы кислотного остатка. Эти ионы в электролите данжутся в направлении от медной пластинки к цинковой. Зато положительные ионы водорода отталкиваются положительными ионами цинка и движутся в обратном направлении, то есть от цинка к меди. Таким об разом, если во внешней цепи ток представляет собой движение электронов (как и всегда в металлических проводниках), то в электролите ток является перемещением положительных и отрицательных ионов в противоположных направлениях. Ионы водорода подходят к медной пластинке и отнимают от нее электроны, превращаясь в нейтральные атомы. Вследствие этого на медной пластинке поддерживается определенный положительный потенциал, несмотря на то, что к ней из внешней цепи прибывают электроны. Однако медная пластинка постепенно покрывается слоем водорода. Между этим слоем и электролитом возникает разность потенциалов, действующая навстречу основной разности потенциалов, имеющейся между электродами. Возникновение такой противоэлетродвижущей силы и называется поляризацией элемента. Вследствие поляризации результирующая разность потенциалов уменьшается и действие элемента ухудшается.
Гальванические элементы характеризуются разными параметрами и прежде всего электродвижущей силой, внутренним сопротивлением, максимальным допустимым разрядным током и емкостью.
Электродвижущая сила обусловливается типом элемента, то есть материалом его электродов, веществом электролита и деполяризатора. Она совершенно не зависит от размеров элемента (размеров его электродов), количества электролита и количества деполяризатора.
Внутреннее сопротивление элемента зависит не только от его типа, но и от его размеров, а также от того, как долго работал элемент. Чем больше размеры элемента, тем меньше его внутреннее сопротивление. По мере работы элемента внутреннее сопротивление растет. Оно особенно резко возрастает у истощившихся элементов. Внутреннее сопротивление у элементов в начале их работы обычно бывает от единиц ом до десятых долей ома. Когда элемент присоединен к замкнутой цепи, напряжение на его зажимах всегда несколько меньше ЭДС и снижается при увеличении тока, так как возрастает потеря части ЭДС на внутреннем сопротивлении элемента. Иногда для элементов указывают напряжение при максимальном разрядном токе в начале работы элемента (начальное напряжение).
Каждый элемент можно разряжать током до определённого значения. Чрезмерно большой ток вызовет ускоренную поляризацию и напряжение быстро станет недопустимо низким. Подобное же явление, но в ещё большей степени происходит при коротком замыкании элемента. У большинства элементов максимальный допустимый разрядный ток составляет доли ампера. Чем больше размеры элемента, тем больше этот ток. Превышение тока приводит и быстрому истощению элемента.
Емкостью элемента называют количество электричества, которое он способен отдать при разряде током не свыше максимального допустимого. Обычно емкость элементов измеряют в ампер-часах (а-ч), то есть произведением разрядного тока в амперах и числа часов работы элемента. Элемент считают разряженным, если его напряжение уменьшилось примерно на 50 % по сравнению с первоначальным значением.
Время работы элемента можно определить, разделив емкость в ампер-часах на разрядный ток в амперах. При этом ток не должен превышать максимального допустимого значения.
Емкость элемента зависит от количества цинка, электролита и деполяризатора. Чем больше размеры элемента, тем больше количество входящих в его состав веществ и тем больше емкость. Кроме того, емкость зависит от разрядного тока, а также от перерывов во время разряда и их длительности. Нормальная емкость элемента соответствует максимальному допустимому разрядному току при непрерывном разряде. Если ток меньше максимального и если разряд происходит с перерывами то емкость увеличивается, а при токе свыше максимального ёмкость снижается, так как часть деполяризатора не участвует в реакциях. Емкость также уменьшается с понижением температуры. Поэтому расчет времени работы элемента по его номинальной емкости и разрядному току является приближенным.
2. МАРГАНЦОВО – ЦИНКОВЫЕ
И ОКСИДНО – РТУТНЫЕ ЭЛЕМЕНТЫ.
Широкое распространение получили марганцово – цинковые (МЦ) сухие элементы с деполяризатором из диоксида марганца.
Сухой элемент стаканчикового типа (рис. 3) имеет цинковый сосуд прямоугольной или цилиндрической формы, являющийся отрицательным электродом. Внутри него помещён положительный электрод в виде угольной
палочки или пластинки, которая находится в мешке, наполненном смесью диоксида марганца с порошком угля или графита. Уголь или графит добавляют для уменьшения сопротивления. Угольный стержень и мешок с деполяризующей массой называют агломератом. В качестве электролита используется паста, составленная из нашатыря (NH4Cl), крахмала и некоторых других веществ. У стаканчиковых элементов центральный вывод является положительным полюсом.
Рабочее напряжение сухого элемента несколько ниже, чем его ЭДС, равная 1,5 В, и составляет примерно 1,3 или 1,4 В. При длительном разряде напряжение по степенно уменьшается, так как деполяризатор не успевает поглощать весь выделяемый водород, и к концу раз ряда оно достигает 0,7 В.

Читайте также:  Сварочный аппарат с плавной регулировкой сварочного тока


Рис.3. Устройство сухого элемента.
Другая конструкция сухого элемента, так называемого галетного типа, показана на рис. 4. В нем положительным электродом является деполяризующая масса (угольного электрода нет). Галетные элементы имеют значительно лучшие характеристики, нежели стаканчиковые.

Рис. 4. Устройство сухого галетного элемента.
1 – деполяризатор – положительный электрод; 2 – цинк – отрицательный электрод; 3 – бумага;
4 – картон, пропитанный электролитом; 5 – полихлорвиниловая плёнка.
В каждом элементе, имеющем электролит, даже при разомкнутой внешней цепи происходит так называемый саморазряд, в результате которого разъедается цинковый электрод, а также истощаются электролит и деполяризатор. Поэтому сухой элемент при хранении постепенно проходит в негодность и электролит у него высыхает.
Когда сухие элементы полностью разрядятся, их агломераты ещё работоспособны и могут быть использованы для устройства самодельных наливных элементов. Такие элементы имеют агломерат и электрод из листового цинка в растворе нашатыря, находящемся в стеклянном или керамическом или пластмассовом стаканчике. При отсутствии нашатыря можно с несколько худшими результатами применить раствор обычной поваренной соли с небольшой добавкой сахара. Помимо сухих элементов типа МЦ, широко применяются элементы с марганцово – воздушной деполяризацией (МВЦ). Они устроены аналогично элементам МЦ, но у них положительный электрод сделан так, что к диоксиду марганца по особым каналам поступает наружный атмосферный воздух. Кислород воздуха возмещает потерю кислорода диоксидом марганца при деполяризации. Поэтому деполяризация может происходить значительно дольше и емкость элемента увеличивается.
Физико-химические процессы в элементах с диоксидом марганца происходят следующим образом. Нашатырь, то есть хлористый аммоний (NH4Cl), в водном растворе образует положительные ионы аммония (NH4) и отрицательные ионы хлора (Cl). Положительные ионы цинка переходят в раствор и цинк приобретает отрицательный потенциал. При замыкании цепи, когда во внешней цепи электроны движутся в направлении от цинка к углю всё время происходит растворение цинка. Его ионы переходят в электролит, за счёт чего поддерживается отрицательный потенциал цинка. Ионы цинка соединяются с ионами хлора, образуя раствор хлористого цинка (ZnCl2). В то же время ионы NH4 движутся к угольному электроду, отнимают от него электроны и распадаются на аммиак (NH3) и водород. Это происходит по уравнению
2NH4 = 2NH3 + H2.
Выделяющийся водород вступает в соединение с деполяризатором, то есть диоксидом марганца, образуя оксид марганца и воду:
H2 + MnО2 = MnО2 + Н2О.
В последние годы выпускаются еще сухие герметичные МЦ-элементы со щелочным электролитом (КОН). Они бывают цилиндрические, дисковые и галетные, ёмкостъ у них в три – пять раз больше, чем у элементов с электролитом из нашатыря. Кроме того, они допускают несколько циклов подзаряда током с отдачей 10% емкости. У таких элементов центральный электрод цинковый и является минусом, то есть полярность выводов противоположна полярности выводов обычных МЦ-элементов. Элементы со щелочным электролитом применяются для длительной работы, например, в электронных часах. В обозначениях таких элементов впереди ставится буква А.
У всех элементов начальное напряжение составляет примерно 1,3 – 1,5 В, а конечное напряжение равно 0,7 – 1 В. Хранение сухих элементов или батарей в бездействующем состоянии перед их использованием не должно продолжаться более срока, указанного на них; в противном случае сохранение работоспособности не гарантируется. Однако при хранении в течение указанного срока происходит некоторое снижение емкости, но не больше, чем на одну треть.
В последнее время выпускаются ещё малогабаритные оксидно – ртутные (ртутно – цинковые) герметичные элементы, имеющие более высокие качества, нежели элементы типа МЦ. Устройство оксидно – ртутных элементов показано на рис. 5. Элемент имеет стальной корпус состоящий из двух половин, отделенных друг от друга герметизирующей изоляционной прокладкой из резины.
В одну половину корпуса впрессована активная масса из оксида ртути (HgO) с графитом, являющаяся положительным электродом. Отрицательным электродом служит цинковый порошок, впрессованный в другую половину корпуса. Щелочной электролит (КОН) пропитывает пористую прокладку, разделяющую электроды. Эти элементы выпускаются разных размеров и разной емкости (от десятых долей ампер-часа до нескольких ампер-
часов). ЭДС у них составляет примерно 1,35 В. Срок хранения этих элементов 2,5 года. Саморазряд не превышает 1 % в год. По сравнению с МЦ-элементами ртут-

Читайте также:  Максимальный ток асинхронного двигателя по мощности

Рис. 5. Устройство герметичного оксиднво-ртутного элемента;
1 – стальной корпус с положительным электродом; 2 – пористая прокладка; 3 – резиновая уплотняющая прокладка; 4 – крышка корпуса с отрицательным электродом.
но – цинковые элементы имеют большую емкость, меньшее внутреннее сопротивление, но более высокую стоимость. Они широко применяются в электронных часах, кардиостимуляторах, фотоэкспонометрах, измерительных приборах. У самых малогабаритных элементов размеры составляют всего лишь несколько миллиметров, а масса – десятые доли грамма.
Важной особенностью оксидно-ртутных элементов является стабильность напряжения при разряде. Только в самом конце разряда напряжение резко падает до нуля.
3. СОЕДИНЕНИЕ ЭЛЕМЕНТОВ В БАТАРЕИ.
Выше говорилось, что ЭДС обычного химического элемента приблизительно равна 1,5 В. Для увеличения ЭДС применяют батарею с последовательным соединением элементов. В этом случае “+” одного элемента соединяют с “–” другого и т. д. “Минус” первого и “плюс” последнего являются полюсами всей батареи (рис. 6.).
При последовательном соединении элементов ЭДС возрастает во столько раз, сколько соединено элементов.


Рис.6. Последовательное и параллельное соединение элементов в батарею.
Реже встречается параллельное соединение элементов, при котором положительные полюсы всех элементов соединяются вместе, образуя положительный полюс батареи, а отрицательный полюс батареи получается путем соединения отрицательных полюсов элементов (рис. 6). При параллельном соединении элементов ЭДС батареи не увеличивается, но возрастают емкость и максимальный разрядный ток. Поэтому параллельное соединение применяют, когда нужно получить больший разрядный ток и большую емкость, чем у одного элемента.
Значительно чаще прибегают к смешанному соединению, при котором увеличиваются и ЭДС, и емкость, и максимальный разрядный ток. В этом случае обычно соединяют параллельно несколько групп элементов, а в каждой группе соединяют последовательно столько элементов сколько нужно для получения необходимой ЭДС.


Рис. 7. Смешанное соединение элементов в батарею.
Число параллельных групп определяется необходимой величиной максимального разрядного тока (рис. 7). Вообще желательно составлять батареи из последовательно соединённых элементов с достаточным разрядным током. И только в случае, когда необходимо получить больший ток или увеличенную емкость, прибегают к смешанному соединению. Включение дополнительных элементов по принципу смешанного соединения применяется также для повышения напряжения, если элементы сильно разрядились.
Во время бездействия батареи параллельные группы элементов надо отсоединять друг от друга, так как за счет даже незначительной разницы в ЭДС одна группа может разряжаться на другую.

Источник

Основные химические источники электроэнергии

Химические источники тока — это устройства и приборы которые в процессе химической окислительно-восстановительной реакции выделяют напряжение. Также они называются электрохимическими, гальваническими элементами. Основной принцип действия их основан на взаимодействии химических реагентов которые вступая, в реакцию друг с другом вырабатывают электроэнергию, в виде постоянного тока. Этот процесс происходит без механического или теплового воздействия, что является основными факторами играющими превосходящую роль среди других генераторов постоянного напряжения. Химические источники тока, сокращённо ХИТ, уже давно нашли применение не только в быту, но и на производстве.

Немного истории создания ХИТ

Батарея Вольта

Ещё в восемнадцатом веке итальянский учёный Луиджи Гальвани придумал простейший элемент который химическим способом выделял электрический ток. Однако он был не только учёным, но и физиком, врачом, физиологом. Он интересовался и проводил опыты которые были направлены на изучение реакции животных на внешние раздражители. Как и всё гениальное первый химический источник энергии был получен Луиджи абсолютно случайно, во время многочисленных экспериментов над лягушками. После присоединения двух пластин из металла к лягушачьей мышце на лапке, было замечено мускульное сокращение. Гальвани посчитал это нервной реакцией на внешний раздражитель и изложил это в результатах своих исследований, попавших в руки другого великого учёного Алессандро Вольта. Он и выложил свою теорию о возникновении напряжения в результате химической реакции, возникшей между двумя металлическими пластинами в среде мускульной ткани лягушки.

Первый химический источник электрического тока представлял собой емкость с соляным составом, в который было погружено две пластины из разных материалов. Одна из меди, другая из цинка. Именно это устройство в будущем, а конкретнее во второй половине девятнадцатого века, было применено при изобретении и создании марганцево-цинкового элемента внутри которого был тот же солевой электролит.

Принцип действия

Принцип действия химического источника питания

Устройства вырабатывающее электрический ток содержит два электрода, которые помещаются между электролитом. Именно на их границе соприкосновения и появляется небольшой потенциал. Один из них называют катодом, а другой анодом. Все эти элементы вместе образуют электрохимическую систему.
Во время возникновения окислительно-восстановительной реакции между электродами один элемент отдаёт мельчайшие частицы электроны другому. Поэтому она и не может происходить вечно, а со временем просто теряются свойства каждого элемента этой цепи.
Электроды могут быть представлены в виде пластин или решёток из металла. После погружения их в среду с электролитом меду их выводами возникает разность потенциалов, которая именуется напряжением разомкнутой цепи. Даже при удалении хотя бы одного из электродов с электролита процесс генерации напряжения прекращается.

Состав электрохимических систем

В качестве электролита используются следующие химические вещества:

  1. Водные растворы на основе щелочей, кислот, солей и т. д.;
  2. Растворы с ионной проводимостью на неводной основе, которые получены при растворении солей в неорганических или органических растворителях;
  3. Твердые соединения, содержащие ионную решетку, где один из ионов является подвижным;
  4. Матричные электролиты. Это особый вид жидких растворов и расплавов, которые находятся в порах твёрдого непроводящего элемента — электроносителя;
  5. Расплавы солей;
  6. Ионообменные электролиты с униполярной системой проводимости. Твёрдые тела с фиксированной ионогенной группой одного знака.

Классификация гальванических элементов и их подбор

Генераторы электрического тока получающегося во время химической реакции разделяются по:

  • Размерам;
  • Конструктивным особенностям;
  • Способу и реагенту, за счёт которого, и получается электроэнергия.

Все элементы вырабатывающее ток во время химической реакции делятся на:

  1. Заряжаемые, которые в процессе эксплуатации могут неоднократно заряжаться от источника постоянного тока, они называются аккумуляторами;
  2. Не заряжаемые, то есть источники одноразового использования которые после завершения химической реакции просто приходят в негодность и должны быть утилизированы. Попросту это гальванический элемент или батарейка.

Для того чтобы подобрать источник электроэнергии, основанный на химической реакции, нужно понимать его характеристики, к которым относятся:

  • Напряжение между анодом и катодом при разомкнутой цепи. Этот показатель чаще всего зависит от выбранной электрохимической системы, а также концентрации и вылечены всех составляющих;
  • Мощность источника;
  • Показатель силы тока;
  • Емкость;
  • Электротехнические показатели, то есть количество циклов заряда и разряда;
  • Диапазон рабочих температур;
  • Срок хранения между тем временем как элемент был создан и до начала его эксплуатации;
  • Полный срок службы;
  • Прочность, то есть защита корпуса от различных механических повреждений и влияний, а также вибраций;
  • Положение работы, некоторые из них работают только в горизонтальных положениях;
  • Надёжность;
  • Простота в эксплуатации и обслуживании. В идеале отсутствие необходимости малейшего вмешательства в работу в течение всего срока эксплуатации.
Читайте также:  Методы расчета линейных электрических цепей метод контурных токов

При выборе нужной батареи или аккумулятора обязательно нужно учесть его электрические номиналы такие как напряжение и ток, а также ёмкость. Именно она является ключевой для сохранения работоспособности, подключаемого к источнику прибора.

Современные химические источники тока и их применение

Современный источник тока

Современный быт человека тяжело приставить без этих мобильных генераторов энергии, с которыми он сталкивается в течение всей жизни, начиная с детских игрушек и заканчивая, допустим, автомобилем.
Сферы применения различных батареек и аккумуляторов настолько разнообразны что перечислить их очень сложно. Работа любого мобильного телефона, компьютера, ноутбука, часов, пульта дистанционного управления была бы невозможна без этого переносного и очень компактного устройства для создания стабильного электрического заряда.
В медицине широко используются источники химической энергии при создании любого аппарата, помогающего человеку полноценно жить. Например, для слуховых аппаратов и электрокардиостимуляторов которые могут работать только от переносных источников напряжения, чтобы не сковывать человека проводами.
В производстве применяются целые системы аккумуляторных батарей для обеспечения напряжением цепей отключения и защит в случае пропадания входящего высокого напряжения на подстанциях. И также широко применяется это питание во всех транспортных средствах, военной и космической технике.
Одним из видов распространённых батарей являются литиевые источники электрического тока, так как именно этот элемент обладает высоким показателем удельной энергии. Дело в том что только этот химический элемент, оказывается, обладает сильным отрицательным потенциалом среди всех известных и изученных человеком веществ. Литий-ионные батареи выделяются среди всех остальных элементов питания по величине вырабатываемой энергии и низким габаритам, что позволяет применять их в самых компактных и мелких электронных устройствах.

Способы утилизации химических источников энергии

Батарейка

Проблема утилизации разных по габаритах химических источников напряжения является экологической проблемой всей планеты. Современные источники содержат в себе до тридцати химических элементов которые могут нанесите ощутимый вред природным ресурсам, поэтому для их утилизации разработаны целые программы и построены специализированные цеха по переработке. Некоторые методы позволяют не только качественно перерабатывать эти вредные вещества, но и возвращать в производство, тем самым защитив окружающую среду. В целях извлечения цветных металлов из батарей и аккумуляторов в настоящий момент разработаны и применены в цивилизованных странах, следящих и заботящихся об окружающей среде, целые пирометаллургические и гидрометаллургические комплексы. Самый же распространённый способ утилизации отработанных химических источников тока является метод, работающий на соединении этих процессов. Главным его достоинством считается высокая степень извлечения с минимальным количеством отходов.
Этот метод пирометаллургической, гидрометаллургической и механической переработки включает в себя восемь основных стадий:

  1. Измельчение;
  2. Магнитная сепарация;
  3. Обжиг;
  4. Дополнительное измельчение;
  5. Выделение крупных и мелких элементов с помощью грохочения;
  6. Водное очищение и выщелачивание;
  7. Сернокислотное выщелачивание;
  8. Электролиз.

Организация правильного сбора и утилизации ХИТ позволяет максимально уменьшить негативное влияние как на окружающую природу, так и на здоровье самого человека.

Видео о химических источниках тока

Источник



Гальванический источник электрической энергии постоянного тока. Источник ЭДС и источник тока.

Источник ЭДС и источник тока. Источник электрической энергии характеризуется ЭДС Е и внутренним сопротивлением R в . Если через него под действием ЭДС Епротекает ток I, то напряжение на его зажимах U = Е — IRв при увеличении I, уменьшается. Зависимость напряжения U на зажимах реального источника от тока I изображена на рис. 2.2, а.

Обозначим через mU — масштаб по оси U, через m1 — масштаб по оси I. Тогда для произвольной точки на характеристике рис. 2.2, а ab= IRв; bс= I; tga = ab/bc = Rв Следовательно, tga пропорционален Rв. Рассмотрим два крайних случая.

1. Если у некоторого источника внутреннее сопротивление Rв= 0, то — прямая линия (рис. 2.2, б). Такой характеристикой обладает идеализированный источник питания, называемый источником ЭДС. Следовательно, источник ЭДС представляет собой такой идеализированный источник питания, напряжение на зажимах которого постоянно (не зависит от тока I) и равно ЭДС Е, а внутреннее сопротивление равно нулю.

2. Если у некоторого источника беспредельно увеличивать ЭДС Е и внутреннее сопротивление Rв, то точка с (рис. 2.2, а) отодвигается по оси абсцисс в бесконечность, а угол αстремится к 90° (рис. 2.2, в). Такой источник питания называют источником тока.

Следовательно, источник тока — идеализированный источник питания, который создает ток J = I, не зависящий от сопротивления нагрузки, к которой он присоединен, а его ЭДС Eит и внутреннее сопротивление Rит равны бесконечности. Отношение двух бесконечно больших величин Eит/Rит равно конечной величине — току Jисточника тока.

При расчете и анализе электрических цепей реальный источник электрической энергии с конечным значением Rв заменяют расчетным эквивалентом. В качестве эквивалента может быть взят:

а) источник ЭДС Е с последовательно включенным сопротивлением Rв, равным внутреннему сопротивлению реального источника (рис. 2.3, а; стрелка в кружке указывает направление возрастания потенциала внутри источника ЭДС);

б) источник тока с током J = E/Rв параллельно с ним включенным сопротивлением Rв (рис. 2.3, б; стрелка в кружке указывает положительное направление тока источника тока).

Ток в нагрузке (в сопротивлении R) для схем рис. 2.3, а, б одинаков: I = E/(R + Rв)

Каким из двух расчетных эквивалентов пользоваться, совершенно безразлично. В дальнейшем используется в основном первый эквивалент.

Обратим внимание на следующее:

1) источник ЭДС и источник тока — идеализированные источники, физически осуществить которые, строго говоря, невозможно;

2) схема рис. 2.3, б эквивалента схеме рис. 2.3, а в отношении энергии, выделяющейся в сопротивлении нагрузки R, и не эквивалентна ей в отношении энергии, выделяющейся во внутреннем сопротивлении источника питания Rв;

3) идеальный источник ЭДС без последовательно соединенного с ним Rв нельзя заменить идеальным источником тока.

В гальваническом элементе (рис. 47, а) происходят химические реакции, и внутренняя энергия, выделяющаяся при этих реакциях, превращается в электрическую. Изображённый на рисунке 47, б элемент состоит из цинкового сосуда (корпуса) Ц. В корпус вставлен угольный стержень У, у которого имеется металлическая крышка М. Стержень помещён в смесь оксида марганца (IV) Мn02 и размельчённого углерода С. Пространство между цинковым корпусом и смесью оксида марганца с углеродом заполнено желеобразным раствором соли (хлорида аммония NH4CI) P.

Рис. 47. Гальванический элемент (батарейка)

В ходе химической реакции цинка Zn с хлоридом аммония NH4CI цинковый сосуд становится отрицательно заряженным.

Оксид марганца несёт положительный заряд, а вставленный в него угольный стержень используется для передачи положительного заряда.

Между заряженными угольным стержнем и цинковым сосудом, которые называются электродами, возникает электрическое поле. Если угольный стержень и цинковый сосуд соединить проводником, то по всей длине под действием электрического поля свободные электроны придут в упорядоченное движение. Возникнет электрический ток.

Гальванические элементы — самые распространённые в мире источники постоянного тока. Их достоинством является удобство и безопасность в использовании.

В быту часто применяют батарейки, которые можно подзаряжать многократно, —аккумуляторы.Простейший аккумулятор состоит из двух свинцовых пластин (электродов), помещённых в раствор серной кислоты.

Чтобы аккумулятор стал источником тока, его надо зарядить. Для зарядки через аккумулятор пропускают постоянный ток от какого-нибудь источника. В процессе зарядки в результате химических реакций один электрод становится положительно заряженным, а другой — отрицательно. Когда аккумулятор зарядится, его можно использовать как самостоятельный источник тока. Полюсы аккумуляторов обозначены знаками « + » и « — ». При зарядке положительный полюс аккумулятора соединяют с положительным полюсом источника тока, отрицательный — с отрицательным полюсом.

Аккумуляторы имеют широкое и разнообразное применение. Они служат для питания сети освещения железнодорожных вагонов, автомобилей, для запуска автомобильного двигателя. Батареи аккумуляторов питают электроэнергией подводную лодку под водой. Радиопередатчики и научная аппаратура на искусственных спутниках Земли также получают электропитание от аккумуляторов, установленных на спутнике.

Источник