Меню

Энергия соленоида с током формула

Энергия соленоида с током формула

Каждый проводник, по которому протекает эл.ток, находится в собственном магнитном поле.

При изменении силы тока в проводнике меняется м.поле, т.е. изменяется магнитный поток, создаваемый этим током. Изменение магнитного потока ведет в возникновению вихревого эл.поля и в цепи появляется ЭДС индукции.

Это явление называется самоиндукцией.

Самоиндукция — явление возникновения ЭДС индукции в эл.цепи в результате изменения силы тока.
Возникающая при этом ЭДС называется ЭДС самоиндукции

Проявление явления самоиндукции

При замыкании в эл.цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое эл.поле, направленное против тока, т.е. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи (вихревое поле тормозит электроны).
В результате Л1 загорается позже, чем Л2.

При размыкании эл.цепи ток убывает, возникает уменьшение м.потока в катушке, возникает вихревое эл.поле, направленное как ток (стремящееся сохранить прежнюю силу тока) , т.е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи.
В результате Л при выключении ярко вспыхивает.

в электротехнике явление самоиндукции проявляется при замыкании цепи (электрический ток нарастает постепенно) и при размыкании цепи (электрический ток пропадает не сразу).

От чего зависит ЭДС самоиндукции?

Электрический ток создает собственное магнитное поле. Магнитный поток через контур пропорционален индукции магнитного поля (Ф

B), индукция пропорциональна силе тока в проводнике
(B

I), следовательно магнитный поток пропорционален силе тока (Ф

I).
ЭДС самоиндукции зависит от скорости изменения силы тока в эл.цепи, от свойств проводника (размеров и формы) и от относительной магнитной проницаемости среды, в которой находится проводник.
Физическая величина, показывающая зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, называется коэффициентом самоиндукции или индуктивностью.

Индуктивность — физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1Ампер за 1 секунду.
Также индуктивность можно рассчитать по формуле:

где Ф — магнитный поток через контур, I — сила тока в контуре.

Единицы измерения индуктивности в системе СИ:

Индуктивность катушки зависит от:
числа витков, размеров и формы катушки и от относительной магнитной проницаемости среды ( возможен сердечник).

ЭДС самоиндукции препятствует нарастанию силы тока при включении цепи и убыванию силы тока при размыкании цепи.

ЭНЕРГИЯ МАГНИТНОГО ПОЛЯ ТОКА

Вокруг проводника с током существует магнитное поле, которое обладает энергией.
Откуда она берется? Источник тока, включенный в эл.цепь, обладает запасом энергии.
В момент замыкания эл.цепи источник тока расходует часть своей энергии на преодоление действия возникающей ЭДС самоиндукции. Эта часть энергии, называемая собственной энергией тока, и идет на образование магнитного поля.

Энергия магнитного поля равна собственной энергии тока.
Собственная энергия тока численно равна работе, которую должен совершить источник тока для преодоления ЭДС самоиндукции, чтобы создать ток в цепи.

Энергия магнитного поля, созданного током, прямо пропорциональна квадрату силы тока.
Куда пропадает энергия магнитного поля после прекращения тока? — выделяется ( при размыкании цепи с достаточно большой силой тока возможно возникновение искры или дуги)

Читайте также:  Задача смешанное соединение резисторов постоянного тока

ВОПРОСЫ К ПРОВЕРОЧНОЙ РАБОТЕ

по теме «Электромагнитная индукция»

1. Перечислить 6 способов получения индукционного тока.
2. Явление электромагнитной индукции (определение).
3. Правило Ленца.
4. Магнитный поток ( определение, чертеж, формула, входящие величины, их ед. измерения).
5. Закон электромагнитной индукции (определение, формула).
6. Свойства вихревого электрического поля.
7. ЭДС индукции проводника, движущегося в однородном магнитном поле ( причина появления, чертеж, формула, входящие величины, их ед. измерения).
8. Самоиндукция (кратко проявление в электротехнике, определение).
9. ЭДС самоиндукции (ее действие и формула).
10. Индуктивность (определение, формулы, ед. измерения).
11. Энергия магнитного поля тока (формула, откуда появляется энергия м. поля тока, куда пропадает при прекращении тока).

Источник

Магнитное поле соленоида. Формула, суть явления.

Магнитное поле соленоида представляет собой суперпозицию отдельных полей, которые создаются каждым витком в отдельности. Через все витки протекает один и тот же ток. Оси всех витков лежат на одной лини. Соленоид представляет собой катушку индуктивности, имеющую цилиндрическую форму. Эта катушка намотана из проводящей проволоки. При этом витки уложены плотно друг к другу и имеют одном направление. При этом считается, что длинна катушки значительно превышает диаметр витков.

Давайте рассмотрим магнитную индукцию, создаваемую каждым витком. Видно, что индукция внутри каждого витка направлена в одну и ту же сторону. Если смотреть в центр витка, то индукция от его краев будет складываться. При этом индукция магнитного поля между двух соседних витков направлена встречно. Так как она создана одним и тем же током то она компенсируется.

Если витки соленоида намотаны достаточно плотно, то между всеми витками встречное поле будет компенсировано, а внутри витков произойдет сложение отдельных поле в одно общее. Линии этого поля будут проходить внутри соленоида, и охватывать его снаружи.

Если исследовать магнитное поле внутри соленоида любыми способами, например, с помощью железных опилок то можно сделать вывод, что оно однородно. Лини магнитного поля в этой области представляют собой параллельные прямые. Мало того что они параллельны сами себе но они еще параллельны оси соленоида. Выходя за приделы соленоида, они искривляются и замыкаются снаружи катушки.

Из рисунка видно, что поле создаваемое соленоидом похоже на поле, которое создает постоянный стержневой магнит. На одном конце силовые линии выходят из соленоида и этот конец аналогичен северному полюсу постоянного магнита. А в другой они входят, и этот конец соответствует южному полюсу. Отличие же заключается в том, что поле присутствует и внутри соленоида. И если провести опыт с железными опилками, то они втянутся в пространство между витками.

Но если внутрь соленоида вставить деревянный сердечник либо сердечник из любого другого немагнитного материала, то при проведении опыта с железной стружкой картина поля постоянного магнита и соленоида будет идентична. Так как деревянный сердечник не исказит силовые лини, но при этом не даст проникнуть опилкам внутрь катушки.

Читайте также:  Зарядное устройство для автомобильного аккумулятора со стабилизацией тока схема

Для определения полюсов соленоида можно использовать несколько методов. Например, самый простой, использовать магнитную стрелку. Она притянется к противоположному полюсу магнита. Если же известно направление тока в витке полюсы можно определить при помощи правила правого винта. Если вращать головку правого винта в направлении тока, то поступательное движение укажет направление поля в соленоиде. А зная, что поле направлено от северного полюса к южному и можно определить, где какой полюс находится.

Чтобы найти модуль магнитной индукции соленоида состоящего из одного слоя можно воспользоваться формулой.

Где N число витков соленоида

l длинна соленоида

n число витков на единицу длинны

I Ток в соленоиде

Мю магнитная проницаемость среды находящейся внутри соленоида

Источник

Энергия электромагнитного поля. Объемная плотность энергии

Объемная плотность энергии

Энергия соленоида с током.

Энергия магнитного поля.

Вопрос №4. Энергия магнитного и электромагнитного полей.

Следовательно, индуктивность L мерой инертности тока в элементарных цепях.

Рассмотрим элементарную цепь, изображённую на рис. 3. Пусть при включении ЭДС (ключ в положении 1) в цепи течет ток I, который создаёт в соленоиде магнитное поле и сцепленный с витками соленоида полный поток ψ=LI. Если ключ К перевести в положение 2, то магнитное поле начнет уменьшаться, поскольку в цепи некоторое время будет течь постепенно убывающий ток, который поддерживается возникающей в соленоиде ЭДС самоиндукции (εс= -dψс/dt). Работа, совершаемая током за время dt:

Предположим, что индуктивность L не зависит от силы тока, тогда dψс=Ldt. В результате получим: IdI. Полную работу за время изменения I до 0, определяем путем интегрирования элементарной работы :

Эта работа расходуется на изменение внутренней энергии сокращения R, т.е. на его нагревание в соответствии с законом Джоуля-Ленца. Совершение работы А сопровождающейся исчезновением магнитного поля в соленоиде, поэтому естественно предположить, что она выполняется за счет энергии магнитного поля, сосредоточенного внутри соленоида.

Следовательно, в общем случае проводник с индуктивностью L, по которому проходит ток I, обладает энергией равной энергии магнитного поля этого тока:

(4.3) – собственная энергия проводника или контура с током.

Поскольку собственная энергия контура с током I одновалентно энергией магнитного поля этого контура с током, то энергию W, определяемую по формуле (4.3) можно выразить через величины, характеризующие поле: индукцию поля и объем V, занимаемый эти полем.

Энергия соленоида В=µµnI, а L=µµn 2 V; I= ; поэтому:

Магнитное поле длинного соленоида практически однородно в его объеме. В связи с этим естественно предположить, что энергия магнитного поля В распределена равномерно с объемной плотностью ωм.

Рассмотрим теперь неоднородное поле, когда (X,Y,Z).

В пределах бесконечного малого объема dV поле можно считать однородным, поэтому энергия dV, равна ωмdV.

Интегрируя это выражение по объему V поля, определяем полную энергию магнитного поля:

Если в некоторой области пространства наряду с магнитным полем существует и электрическое, то полная плотность энергии электромагнитного поля будет равна сумме плотностей e и м.

Читайте также:  Что такое потребляемая сила тока по фазам

Для анизотропной среды, в которой существует электромагнитное поле, направления векторов и , а также и не совпадают.

Это связано с тем, что в этом случае поляризованность диэлектрической среды не совпадает с направлением вектора . Точно так же намагниченность не совпадает с направлением вектора . Поэтому плотности e и м можно выразить скалярным произведением соответствующих напряженностей и индукций:

Полную энергию электромагнитного поля вычисляем по формуле:

Интегрирование по формуле (4.7) следует вести по всему объему V, в котором характеристики электрического и магнитного полей не равны нулю.

Литература:

1. И.И. Наркевич, Э.И. Волмянский, С.И. Лобко. Физика. – Мн.:000 «Новое знание», 2004.

2. Б.М. Яворский, А.А. Пинский Основы физики. – М.: Физмат Лит, Т. 1., 2003.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник



Физика

Энергия однородного магнитного поля определяется значением его индукции, магнитными свойствами среды и объемом пространства, занятого полем:

W = B 2 V 2 µ 0 µ ,

где B — модуль индукции магнитного поля; V — объем пространства, занятого полем; µ 0 — магнитная постоянная, µ 0 = 4π ⋅ 10 –7 Гн/м; µ — магнитная постоянная.

В Международной системе единиц энергия магнитного поля измеряется в джоулях (1 Дж).

Энергия магнитного поля в соленоиде ( катушке ) может быть рассчитана по формуле

где L — индуктивность соленоида (катушки); I — сила тока в обмотке соленоида (катушки).

Плотность энергии магнитного поля — энергия единицы объема пространства, занятого полем:

где W — энергия магнитного поля, занимающего объем V .

В Международной системе единиц плотность энергии магнитного поля измеряется в джоулях, деленных на кубический метр (1 Дж/м 3 ).

Плотность энергии магнитного поля в соленоиде ( катушке ) также определяется отношением

где W — энергия магнитного поля в соленоиде, W = LI 2 /2; L — индуктивность соленоида; I — сила тока в обмотке соленоида; V — объем внутреннего пространства соленоида, V = Sl ; S — площадь поперечного сечения соленоида; l — длина соленоида.

Пример 24. Соленоид длиной 25 см и площадью поперечного сечения 4,0 см 2 имеет индуктивность 0,25 мГн. При какой силе тока энергия единицы объема магнитного поля внутри соленоида будет равна 1,0 мДж/м 3 ?

Решение . Плотность энергии магнитного поля определяется отношением:

где W — энергия магнитного поля; V — объем пространства, занятого магнитным полем.

Если магнитное поле создается внутри соленоида, по которому протекает ток, то его энергия может быть рассчитана по формуле

где L — индуктивность соленоида, L = 0,25 мГн; I — сила тока, протекающего по обмотке соленоида (искомая величина).

где S — площадь поперечного сечения соленоида, S = 4,0 см 2 ; l — длина соленоида.

Подставим выражения для W и V в формулу для расчета плотности энергии магнитного поля

и выразим отсюда искомую силу тока:

I = 2 ⋅ 4,0 ⋅ 10 − 4 ⋅ 25 ⋅ 10 − 2 ⋅ 1,0 ⋅ 10 − 3 0,25 ⋅ 10 − 3 = 28 ⋅ 10 − 3 А = 28 мА .

Заданная плотность энергии магнитного поля внутри соленоида обеспечивается при силе тока, приблизительно равной 28 мА.

Источник