Меню

Электропередача постоянного тока тепловоза

Основные типы электрических передач тепловозов.

Основные типы электрических передач тепловозов. Железная Дорога, Тепловоз, Длиннопост

На тепловозах с электрической передачей тяговый (главный) генератор преобразует механическую энергию двигателя внутреннего сгорания в электрическую для питания тяговых электродвигателей.

Полученную от тягового генератора электрическую энергию электродвигатели вновь преобразуют в механическую энергию и приводят во вращение движущие колесные пары локомотива.

Такова в самых общих чертах схема электрической передачи тепловозов.

Кроме тяговых электрических машин, на тепловозах установлены различные дополнительные электрические генераторы и электродвигатели, электрические аппараты и устройства управления, автоматического регулирования работы отдельных агрегатов, защиты оборудования от недопустимых режимов работы.

Передача реализует заданную машинистом мощность дизель-генератора (в том числе и номинальную) при изменении скорости движения локомотива с поездом в зависимости от профиля пути и других условий.

С учетом веса поезда, профиля пути, допустимой скорости движения машинист тепловоза реализует различную мощность дизеля, обычно изменяя частоту вращения коленчатого вала посредством контроллера.

Повышение к.п.д. самой передачи также сокращает невосполнимые потери энергии, улучшает использование дизельного топлива, расходуемого тепловозом.

Уменьшение потерь в передаче тепловозов всего на 5% эквивалентно экономии в целом на железнодорожном транспорте более 100 тыс. т дизельного топлива в год стоимостью свыше 8 млн. руб.

В настоящее время к. п. д. электрической передачи тепловозов достигает 82—86% при работе на номинальной мощности.

Основные типы электрических передач тепловозов. Железная Дорога, Тепловоз, Длиннопост

Наиболее широкое распространение на отечественных тепловозах получила электрическая передача постоянного тока, в которой используются тяговые электрические машины только постоянного тока (рис. 129, а).

На тепловозах большой мощности в последние годы широко применяют электрическую передачу переменно-постоянного тока (рис. 129, б).

В передаче такого типа используются синхронный тяговый генератор переменного тока и тяговые электродвигатели постоянного тока.

Двигатели постоянного тока позволяют наиболее просто получить оптимальную тяговую характеристику тепловоза. Вырабатываемый синхронным тяговым генератором переменный ток выпрямляется, т. е. преобразуется в постоянный ток с помощью специальной выпрямительной установки.

Стремление упростить конструкцию тяговых электродвигателей, снизить их массу и стоимость, повысить надежность работы, свести к минимуму потребность в их обслуживании и ремонте привело к созданию для тепловозов передачи переменно-переменного тока (рис. 129, в). В такой передаче применяются и тяговый генератор, и тяговые электродвигатели переменного тока.

Асинхронные электродвигатели переменного тока значительно проще по конструкции, легче, дешевле электродвигателей постоянного тока такой же мощности.

В них отсутствуют коллектор и щеточный аппарат, которые ненадежны в эксплуатации, поэтому исключаются частые осмотры, снижаются затраты труда на обслуживание и ремонт.

Однако для регулирования скорости движения тепловоза с тяговыми электродвигателями переменного тока необходимо менять частоту тока, подводимого к двигателям.

Наиболее совершенные преобразователи частоты переменного тока, основанные на использовании управляемых полупроводниковых вентилей (тиристоров), остаются еще весьма сложными по конструкции и дорогими. Преобразование частоты тока связано с потерями энергии, что несколько снижает общий к.п.д. передачи.

Основные типы электрических передач тепловозов. Железная Дорога, Тепловоз, Длиннопост

Электрическими передачами постоянного тока оборудованы отечественные маневровые тепловозы ТЭ1, ТЭМ1, ТЭМ2, магистральные грузовые тепловозы ТЭЗ, М62, 2ТЭ10Л, 2ТЭ10В и пассажирские тепловозы ТЭП60 (рис. 130, а).

На каждой секции этих тепловозов установлено по одному тяговому генератору постоянного тока, приводимому в действие дизелем.

Секция тепловоза в соответствии с числом движущих колесных пар оборудована шестью тяговыми электродвигателями.

Каждый электродвигатель приводит во вращение через зубчатую передачу одну колесную пару локомотива. Мощность тягового генератора и тяговых электродвигателей определяется мощностью применяемых на тепловозах дизелей.

Так, номинальная мощность тягового генератора тепловоза ТЭ1 с дизелем мощностью 736 кВт (1000 л. с.) составляет 700 кВт, каждого тягового электродвигателя — 98 кВт.

Номинальная мощность генератора тепловозов типов ТЭ10, ТЭП60, оборудованных дизелями мощностью 2210 кВт (3000 л. с), соответственно увеличена до 2000 кВт, а тягового электродвигателя —- до 305 кВт.

Электрическая передача переменно-постоянного тока получила применение на грузовых тепловозах 2ТЭ116, 2ТЭ121, пассажирских тепловозах ТЭП70 и ТЭП75, а также на экспортных тепловозах ТЭ109 (рис. 130, б).

Каждая секция этих тепловозов оборудована синхронным тяговым генератором переменного тока и шестью тяговыми электродвигателями постоянного тока.

Переменный ток, вырабатываемый синхронным генератором, преобразуется в постоянный (с незначительной пульсацией) с помощью выпрямительной установки, которая собрана из силовых полупроводниковых (кремниевых) вентилей.

Переход на тяговые генераторы переменного тока вызван ограниченными возможностями увеличения мощности тепловозных генераторов постоянного тока.

Как показал опыт постройки и эксплуатации новых тепловозов, генераторы переменного тока обладают и целым рядом других достоинств — имеют меньшую массу, надежнее в эксплуатации, проще в обслуживании и ремонте.

Даже с учетом необходимости применения достаточно дорогих по стоимости выпрямительных установок использование генераторов переменного тока является, безусловно, оправданным на тепловозах с дизелями мощностью 2210— 2940 кВт (3000—4000 л. с.) и более.

Источник

Электрическая передача на тепловозах

Опубликовано 26.07.2019 · Обновлено 04.02.2021

При разработке проектов тепловозов инженерная мысль искала различные технические решения передачи вращающего момента от дизеля к движущим колесным парам. Создавались проекты электрической, механической, пневматической и гидравлической передач, и только две из них практически были осуществлены на тепловозах – электрическая и гидравлическая.

теплвоз в разрезе

В этой статье я расскажу об электрической передаче. Она нашла самое широкое применение на мощных магистральных и маневровых тепловозах. Электрическая передача очень надежная и экономичная, но имеет и недостатки – большой вес и требует для изготовления дорогостоящих цветных и изоляционных материалов. Но все равно, несмотря на свои некоторые недостатки, она является основной в тепловозостроении.

Тепловозный дизель-генератор

Электрическая передача работает по принципу – дизель вращает вал генератора, вырабатываемый им ток поступает на тяговые электродвигатели, расположенные на осях движущих колесных пар. Такие установки на тепловозах называются – дизель-генераторными. В прежних статьях я уже касался вопроса тягового привода локомотивов, где рассматривалась именно электрическая передача. Вот тяговые электродвигатели и располагаются либо на опорно-осевой подвеске, либо на опорно-рамной в рамах тележек, в зависимости от конструкции.

Читайте также:  Подшипник для электродвигателей постоянного тока

Колёсно-моторный блок тепловоза

Колёсно-моторный блок тепловоза

Тяговые электродвигатели (ТЭД) соединены с главным генератором (ГГ) соединительными кабелями. Еще очень важным и сложным элементом в электрической передаче являются системы и устройства ее регулирования.

Существует несколько типов электрической передачи: на постоянном токе и на переменном токе. Все тяговые электродвигатели тепловозов работают на постоянном токе, поэтому электрическая передача постоянного тока имеет главный генератор постоянного тока. Ток вырабатываемый генератором сразу поступает на тяговые электродвигатели.
Здесь есть и свои недостатки – большой вес и габариты главного генератора, большой расход цветных металлов на его производство.

Генераторный блок

Генераторный блок

Существуют и передачи переменно-постоянного тока. Дизель вращает якорь генератора переменного тока, а далее переменный ток преобразуется в постоянный в выпрямительных установках и все равно на ТЭД поступает постоянный ток.
Здесь есть свои преимущества – главный генератор переменного тока значительно проще в изготовлении, расход цветных металлов меньше, значительно меньше его вес и габариты, но требуется установка выпрямительных установок. Запуск дизеля на тепловозах с электрической передачей осуществляется с помощью самого главного генератора — система в момент запуска дизеля переводит генератор в режим сериесного электродвигателя, он и раскручивает вал дизеля. Сериесный электродвигатель – это двигатель в котором обмотка якоря и обмотка возбуждения соединены последовательно. Не требуется установка стартера или системы накопления и сохранения сжатого воздуха для пуска дизеля.

Дизель-генераторная установка тепловоза

Дизель-генераторная установка тепловоза

Конечно для вращения вала главного генератора требуется большая мощность дизеля, ведь все мы знаем, что такое «противоЭДС» — сила, направленная против вращения якоря генератора и ее надо постоянно преодолевать. Поэтому приходиться применять разные системы регулирования электрической передачи на тепловозах. Она позволяет автоматически поддерживать постоянную мощность главного генератора за счет сложной системы возбуждения, позволяющей автоматически изменять ток возбуждения главного генератора в зависимости: от позиции контроллера машиниста (как правило контроллер имеет 15 позиций); от величины тока в силовой цепи; от напряжения главного генератора; от потребляемой мощности от вала дизеля вспомогательными устройствами и агрегатами.

Повторюсь, система очень сложная, включает в себя всевозможные механические и электрические устройства. Как-нибудь, наберусь смелости и попробую написать статью в которой попытаюсь изложить все это просто и доступно.

Машинное отделение тепловоза 2ТЭ10М

Машинное отделение тепловоза 2ТЭ10М

Тяговые электродвигатели на тепловозах подключаются либо последовательно, либо параллельно, в зависимости от конструкции тепловоза, подключение к главному генератору осуществляется посредством силовых электропневматических контакторов, смена направления движения тепловоза осуществляется разворотом электропневматического устройства с силовыми контактами – реверсора.

Источник

Принцип работы тепловоза

Тепловоз. Принцип работы

Принцип работы тепловоза заключается в том, что он сам для себя вырабатывает электрическую энергию в отличие от электровоза, который берет ее из контактной сети.

Устройство тепловозов

Локомотивы — это железнодорожная единица, предназначенная для реализации тяговых усилий для перемещения состава. Локомотив представляет собой очень сложную систему машин и механизмов, которые, взаимодействуя между собой, приводят к образованию тяговых и тормозных усилий на ободе колесных пар.

Первичным двигателем на тепловозе является дизель. Чтобы привести во вращение колесные пары тепловоза от вала дизеля, требуется специальная передача. Если вал дизеля непосредственно соединить с движущими осями тепловоза, то двигатель нельзя будет запустить под нагрузкой, и трогание такого локомотива будет затруднено. Кроме того, частота вращения вала дизеля, следовательно, и его мощность пропорциональны скорости движения тепловоза, поэтому полная мощность дизеля может быть получена лишь при максимальной скорости.

Передача позволяет обеспечить трогание тепловоза с места и реализацию полезной мощности дизеля во всем диапазоне скорости движения локомотива. Передача может быть электрической, механической или гидравлической.

К вспомогательному оборудованию относятся топливная система, системы смазки и охлаждения и др.

Основы устройства и принцип работы тепловоза с электрической передачей

Тепловоз – локомотив, у которого источником энергии является тепловой двигатель внутреннего сгорания – дизель, вращающий момент от дизеля через специальную передачу передается на колесные пары, которые начинают вращаться, приводя в движение тепловоз.

Электрическая передача получила самое широкое распространение в тепловозостроении. Она удовлетворяет эксплуатационным требованиям, предъявляемым к локомотивам, и сохраняет постоянство мощности при изменении силы тяги и скорости движения.

В электрической передаче вал дизеля вращает тяговый генератор, питающий тяговые электродвигатели (ТЭД). В свою очередь вращение вала ТЭД передаётся колёсной паре через осевой редуктор. Редуктор представляет собой сопряженные зубчатые колёса, располагающиеся на валу ТЭД и оси колёсной пары. Благодаря жесткой механической связи между колесными парами групповой привод обеспечивает большую устойчивость к боксованию. Электропередача постоянного тока обладает гиперболической тяговой характеристикой, при которой увеличение сопротивления движения вызывает увеличение силы тяги, а уменьшение — ускорение локомотива, легко управляется и регулируется. Электропередача позволяет управлять несколькими тепловозами по системе многих единиц из одной кабины. Недостатки её — большая масса и относительная дороговизна необходимого оборудования, наличие щеточно-коллекторных узлов, ограничивающих рабочие токи и напряжения и требующих частого обслуживания. Электропередача обеспечивает электродинамическое (реостатное) торможение, при котором ТЭД работают как генераторы, нагруженные тормозными реостатами; за счёт сопротивления вращению валов ТЭД осуществляется торможение. По сравнению с пневматическими тормозами при электродинамическом торможении меньше износ тормозных колодок.

На тепловозах применяют электрические передачи трех видов: передача постоянного тока, переменного тока и переменно-постоянного тока.

Читайте также:  Сколько выдает тока скутера

Общее устройство и работа тепловозов

Воспламенение топлива в дизеле происходит не от электрической искры, а оно самовоспламеняется в нагретом до высокой температуры воздухе при его сжатии.

Сгорание топлива в цилиндрах дизеля обусловлено наличием кислорода, содержащегося в воздухе, поступающем в цилиндры дизеля.

Чтобы получить возможно большую мощность в цилиндрах дизеля, не прибегая к увеличению их объема, воздух в цилиндры нагнетают под давлением выше атмосферного, т. е. осуществляют наддув с помощью механических или турбинных нагнетателей.

Превращение полученной в цилиндрах дизеля тепловой энергии в механическую осуществляется посредством шатунно-кривошипного механизма, состоящего из поршня, шатуна и колена (кривошипа) коленчатого вала.

Для получения сжатого воздуха, необходимого для питания тормозной системы, а также для электропневматической системы управления механизмами и аппаратами, на тепловозе установлен компрессор. Привод компрессора и других вспомогательных машин осуществляется от вала дизеля через раздаточный редуктор. На некоторых тепловозах для привода компрессора (и других машин) используют электродвигатели.

На тепловозе имеется аккумуляторная батарея, запас электрической энергии которой используется для пуска дизеля (раскрутки коленчатого вала), а также для питания цепей управления и освещения тепловоза. При работающем дизеле эти функции (кроме пуска) выполняет вспомогательный электрический генератор. Он также служит для заряда аккумуляторной батареи.

Устройство тепловоза

К основным системам тепловоза относятся энергетическая установка, система передачи мощности, система управления, тормозная система, песочная система и экипажная часть.

Энергетическая установка тепловоза состоит из дизеля и вспомогательных систем, обеспечивающих его нормальную работу. К этим системам относятся топливная, водяная, масляная и система воздухоснабжения.

Топливная система обеспечивает питание дизеля жидким топливом. Она состоит из топливных баков, топливоподкачивающих насосов, топливных фильтров, топливоподогревателей, топливных насосов высокого давления и форсунок, распыляющих топливо в цилиндрах дизеля.

Система водяного охлаждения (водяная система) служит для отвода теплоты от дизеля и включает в себя циркуляционные водяные насосы и радиаторы, в которых тепло от воды передается атмосферному воздуху. Для более интенсивного отвода тепла от радиаторов воздух через них принудительно прогоняется специальным вентилятором.

Масляная система дизеля служит для подачи смазки масла к трущимся частям дизеля и для отвода теплоты от них. Она состоит из насосов, фильтров для очистки масла и охлаждающих устройств – радиаторов или теплообменников.

Система воздухоснабжения предназначена для подачи в дизель воздуха необходимого для сгорания топлива. Она состоит из воздухозаборников, воздухоочистителей, воздуховодов и агрегатов, обеспечивающих подачу воздуха под определенным давлением в цилиндры дизеля (нагнетатели, турбокомпрессоры).

Передача мощности приспосабливает дизель к условиям работы на локомотиве. На тепловозе с электрической передачей механическая энергия вращения коленчатого вала дизеля сообщается тяговому генератору, который преобразует ее в электрическую. Электрическая энергия от генератора через преобразовательные и управляющие устройства поступает в тяговые электрические двигатели, которые с помощью передаточных механизмов приводят во вращение колесные пары. Передача мощности включает также агрегаты, предназначенные для подачи воздуха на охлаждение тяговых двигателей и преобразовательных установок.

Тормозная система предназначена для создания регулируемых тормозных сил, а также для снабжения сжатым воздухом тормозных магистралей поезда и ряда вспомогательных устройств тепловоза.

Песочная система служит для подачи сухого песка к точкам контакта колес с рельсами, для улучшения сцепления колес локомотива с рельсами на трудных участках профиля и трогании поезда с места. Она состоит из бункеров для хранения песка, форсунок для подачи песка под колеса и устройств управления.

Экипажная часть тепловоза включает в себя главную раму с ударно-сцепными устройствами (автосцепками), кузов и ходовую часть – тележку. В мировой практике локомотивостроения тележечные экипажи получили наибольшее распространение, поскольку они позволяют снизить уровень динамических сил при взаимодействии подвижного состава с верхним строением пути, равномерно распределять вес локомотива по осям, минимизировать эффект перераспределения нагрузки при трогании с места и торможении, проходить кривые малых радиусов.

Главная рама тепловоза служит для размещения и закрепления узлов перечисленных выше систем. Она передает их вес через колеса на рельсы. Кроме того, главная рама передает продольные тяговые усилия от ведущих осей к поезду.

Кузов размещается на главной раме и защищает оборудование тепловоза от воздействия окружающей среды. Кузова тепловозов бывают двух типов капотного (маневровые тепловозы) или вагонного (магистральные тепловозы). В первом случае кузов образует машинное отделение с внутренними проходами для обслуживания дизеля и вспомогательных систем; во втором – капот накрывает оборудование тепловоза, доступ к которому снаружи обеспечивается через боковые дверцы.

Энергетическая установка

Энергетическая установка тепловоза – дизель, преобразует химическую энергию топлива в механическую энергию вращения коленчатого вала.

Дизель состоит из неподвижного блока цилиндров, составляющего вместе с картером и поддоном единую конструкцию называемую остовом. В верхней части цилиндр закрыт крышкой. В крышке расположены впускные и выпускные клапаны и форсунка для подачи дизельного топлива. Движущиеся детали дизеля поршень, шатун, кривошип и вал объединены с помощью подшипников и составляют кривошипно-шатунный механизм. При работе дизеля поршень совершает возвратно-поступательное движение вдоль оси цилиндра, которое с помощью кривошипно-шатунного механизма преобразуется во вращательное движение коленчатого вала.

Принцип действия дизельного двигателя заключается в следующем.

При сгорании топлива в объеме сжатого воздуха между стенками цилиндра и днищем поршня образуются газы – продукты сгорания.

Вследствие этого давление в цилиндре резко возрастает, что приводит к перемещению поршня.

Таким образом, тепловая энергия продуктов сгорания преобразуется в механическую энергию движения поршня.

Читайте также:  Ощущение как будто проходит ток по телу

После расширения отработавшие газы выпускаются из цилиндра через выпускной клапан.

Источник



Электропередача постоянного тока тепловоза

ОСНОВНЫЕ ВИДЫ ЭЛЕКТРИЧЕСКИХ ПЕРЕДАЧ ТЕПЛОВОЗА

Наиболее широкое распространение на отечественных тепловозах получила электрическая передача постоянного тока, в которой используются тяговые электрические машины только постоянного тока (рис. 129, а).

На тепловозах большой мощности в последние годы широко применяют электрическую передачу переменнопостоянного тока (рис. 129, б). В передаче такого типа используются синхронный тяговый генератор переменного тока и тяговые электродвигатели постоянного тока. Двигатели постоянного тока позволяют наиболее просто получить оптимальную тяговую характеристику тепловоза. Вырабатываемый синхронным тяговым генератором переменный ток выпрямляется, т. е. преобразуется в постоянный ток с помощью специальной выпрямительной установки.

Стремление упростить конструкцию тяговых электродвигателей, снизить их массу и стоимость, повысить надежность работы, свести к минимуму потребность в их обслуживании и ремонте привело к созданию для тепловозов передачи переменно-переменного тока

(рис. 129, в). В такой передаче применяются и тяговый генератор, и тяговые электродвигатели переменного тока.

Асинхронные электродвигатели переменного тока значительно проще по конструкции, легче, дешевле электродвигателей постоянного тока такой же мощности. В них отсутствуют коллектор и щеточный аппарат, которые ненадежны в эксплуатации, поэтому исключаются частые осмотры, снижаются затраты труда на обслуживание и ремонт.

Однако для регулирования скорости движения тепловоза с тяговыми электродвигателями переменного тока необходимо менять частоту тока, подводимого к двигателям. Наиболее совершенные преобразователи частоты переменного тока, основанные на использовании управляемых полупроводниковых вентилей (тиристоров), остаются еще весьма сложными по конструкции и дорогими. Преобразование частоты тока связано с потерями энергии, что несколько снижает общий к.п.д. передачи.

В нашей стране и за рубежом продолжаются интенсивные научно-исследовательские, опытно-конструкторские работы по созданию электрической передачи переменно-переменного тока, пригодной для практического использования на локомотивах. Построены и испытываются опытные образцы тепловозов с такой передачей.

Электрическими передачами постоянного тока оборудованы отечественные маневровые тепловозы ТЭ1, ТЭМ1, ТЭМ2, магистральные грузовые тепловозы ТЭ3, М62, 2ТЭ10Л, 2ТЭ10В и пассажирские тепловозы ТЭП10, ТЭП60 (рис. 130, а). На каждой секции этих тепловозов установлено по одному тяговому генератору постоянного тока, приводимому в действие дизелем. Секция тепловоза в соответствии с числом движущих колесных пар оборудована шестью тяговыми электродвигателями. Каждый электродвигатель приводит во вращение через зубчатую передачу одну колесную пару локомотива. Мощность тягового генератора и тяговых электродвигателей
определяется мощностью- применяемых на тепловозах дизелей.

Так, номинальная мощность тягового генератора тепловоза ТЭ1 с дизелем мощностью 736 кВт (1000 л. с.) составляет 700 кВт, каждого тягового электродвигателя — 98 кВт. Номинальная мощность генератора тепловозов типов ТЭ10, ТЭП60, оборудованных дизелями мощностью 2210 кВт (3000 л. с.), соответственно увеличена до 2000 кВт, а тягового электродвигателя — до 305 кВт.

Электрическая передача перемен-но-постоянного тока получила применение на грузовых тепловозах 2ТЭ116, 2ТЭ121, пассажирских тепловозах ТЭП70 и ТЭП75, а также на экспортных тепловозах ТЭ109 (рис. 130, б). Каждая секция этих тепловозов оборудована синхронным тяговым генератором переменного тока и шестью тяговыми электродвигателями постоянного тока. Переменный ток, вырабатываемый синхронным генератором, преобразуется в постоянный (с незначительной пульсацией) с помощью выпрямительной установки, которая собрана из силовых полупроводниковых (кремниевых) вентилей.

Переход на тяговые генераторы переменного тока вызван ограниченными возможностями увеличения мощности тепловозных генераторов постоянного тока. Как показал опыт постройки и эксплуатации новых тепловозов, генераторы переменного тока обладают и целым рядом других достоинств — имеют меньшую массу, надежнее в эксплуатации, проще в обслуживании и ремонте. Даже с учетом необходимости применения достаточно дорогих по стоимости выпрямительных устано-вок использование генераторов переменного тока является, безусловно, оправданным на тепловозах с дизелями мощностью 2210— 2940 кВт (3000—4000 л. с.) и более. Генераторы переменного тока успешно конкурируют с генераторами постоянного тока при секционной мощности до 2210 кВт (3000 л. с.). И лишь на тепловозах мощностью менее 1470 кВт (2000 л. с.) генераторы постоянного тока находят по-прежнему преимущественное применение. Однако по мере совершенствования полупроводниковой техники, снижения стоимости изготовления выпрямителей тяговые генераторы переменного тока будут распространяться все шире.

На всех отечественных тепловозах применяется электрический пуск дизелей от аккумуляторной батареи. Поэтому тепловозы оборудуются мощными аккумуляторными батареями. При пуске дизеля тяговый генератор постоянного тока работает в режиме электродвигателя, питается электроэнергией от батареи и приводит во
вращение коленчатый вал. На тепловозах с передачей переменно-постоянного тока для пуска дизеля устанавливается стартерный электродвигатель.

Отдельные зарубежные тепловозы оборудованы так называемыми моно-моторными тележками с групповым приводом колесных пар (см. гл. 21). На тележке тепловоза устанавливается лишь один тяговый электродвигатель, который через редуктор приводит во вращение все колесные пары данной тележки. В этом случае уменьшается число тяговых электродвигателей, упрощается их обслуживание в эксплуатации, сокращается длина тележек, улучшаются тяговые качества локомотива. Однако размеры тягового электродвигателя значительно увеличиваются по сравнению с двигателями для индивидуального привода колесных пар. Два тяговых электродвигателя занимают значительное место в кузове локомотива, который и без того перегружен оборудованием.

Рис. 129. Структурные схемы электрической передачи:
а — на постоянном; б — на переменно-постоянном; a — на переменно-переменном токе; Д — дизель; Г — тяговый генератор постоянного тока; СГ —синхронный тяговый генератор переменного тока? ВУ — выпрямительная установка; ПЧ — преобразователь частоты переменного тока; 1—3 тяговые электродвигатели

Рис. 130. Структурные схемы электрической передачи тепловозов (обозначения см. на рис. 129):
а — 2ТЭШЛ, 2ТЭ10В, ТЭП10, ТЭП60; б — 2ТЭ116, ТЭ109, ТЭП70, ТЭП75

Источник