Меню

Электромагнитная индукция модель генератора тока

Индукционный генератор переменного тока

Индукционный генератор переменного тока. В индукционных генераторах переменного тока механическая энергия превращается в электрическую. Индукционный генератор состоит из двух частей: подвижной, которая называется ротором, и неподвижной, которая называется статором. Действие генератора основано на явлении электромагнитной индукции. Индукционные генераторы имеют сравнительно простое устройство и позволяют получать большие токи при достаточно высоком напряжении. В настоящее время имеется много типов индукционных генераторов, но все они состоят из одних и тех же основных частей. Это, во-первых, электромагнит или постоянный магнит, создающий магнитное поле, и, во-вторых, обмотка, состоящая из последовательно соединенных витков, в которых индуцируется переменная электродвижущая сила. Так как электродвижущие силы, наводимые в последовательно соединенных витках, складываются, то амплитуда электродвижущей силы индукции в обмотке пропорциональна числу витков в ней.

Число силовых линий, пронизывающих каждый виток, непрерывно меняется от максимального значения, когда он расположен поперек поля, до нуля, когда силовые линии скользят вдоль витка. В результате при вращении витка между полюсами магнита через каждые пол-оборота направление тока меняется на противоположное, и в витке появляется переменный ток. Во внешнюю цепь ток отводится при помощи скользящих контактов. Для этого на оси обмотки укреплены контактные кольца, присоединенные к концам обмотки. Неподвижные пластины – щетки – прижаты к кольцам и осуществляют связь обмотки с внешней цепью (рис. 6.9).

Пусть виток провода вpащается в одноpодном магнитном поле с постоянной угловой скоpостью . Магнитный поток, пронизывающий виток, меняется по закону , здесь S – площадь витка. Согласно закону Фаpадея в обмотке наводится электродвижущая сила индукции, которая опpеделяется следующим обpазом:

где N – число витков в обмотке. Таким образом, электродвижущая сила индукции в обмотке изменяется по синусоидальному закону и пpопоpциональна числу витков в обмотке и частоте вpащения.

В опыте с вращающейся обмоткой статором является магнит и контакты, между которыми помещена обмотка. В больших промышленных генераторах вращается электромагнит, который является ротором, в то время как обмотки, в которых наводится электродвижущая сила, уложены в пазах статора и остаются неподвижными. На тепловых электростанциях для вращения ротора используются паровые турбины. Турбины, в свою очередь, приводятся во вращение струями водяного пара, полученного в огромных паровых котлах за счет сжигания угля или газа (теплоэлектростанции) или распада вещества (атомные электростанции). На гидроэлектростанциях для вращения ротора используются водяные турбины, которые вращаются водой, падающей с большой высоты.

Электрогенераторы играют важнейшую роль в развитии нашей технологической цивилизации, поскольку позволяют получать энергию в одном месте, а использовать ее в другом. Паровая машина, например, может преобразовывать энергию сгорания угля в полезную работу, но использовать эту энергию можно только там, где установлены угольная топка и паровой котел. Электростанция же может размещаться весьма далеко от потребителей электроэнергии – и, тем не менее, снабжать ею заводы, дома и т.п.

Рассказывают (скорее всего, это всего лишь красивая сказка), будто Фарадей демонстрировал прототип электрогенератора Джону Пилу, канцлеру казначейства Великобритании, и тот спросил ученого: «Хорошо, мистер Фарадей, все это очень интересно, а какой от всего этого толк?».

«Какой толк? – якобы удивился Фарадей. – Да вы знаете, сэр, сколько налогов эта штука со временем будет приносить в казну?!»

Трансформатор.

Трансформатор. Электродвижущая сила мощных генераторов электростанций велика, между тем практическое использование электроэнергии требует чаще всего не очень высоких напряжений, а передача энергии, наоборот, очень высоких.

Для уменьшения потерь на нагревание проводов необходимо уменьшить силу тока в линии передачи, и, следовательно, для сохранения мощности увеличить напряжение. Напряжение, вырабатываемое генераторами (обычно около 20 кВ), повышают до напряжения 75 кВ, 500 кВ и даже до напряжения 1,15 МВ, в зависимости от длины линии электропередачи. Повышая напряжение с 20 до 500 кВ, то есть в 25 раз, уменьшают потери в линии в 625 раз.

Преобразование переменного тока определенной частоты, при котором напряжение увеличивается или уменьшается в несколько раз практически без потери мощности, осуществляется электромагнитным устройством, не имеющим подвижных частей – электрическим трансформатором. Трансформатор – важный элемент многих электрических приборов и механизмов. Зарядные устройства и игрушечные железные дороги, радиоприемники и телевизоры – всюду трудятся трансформаторы, которые понижают или повышают напряжение. Среди них встречаются как совсем крошечные, не более горошины, так и настоящие колоссы массой в сотни тонн и более.

Трансформатор состоит из магнитопровода, представляющего собой набор пластин, которые обычно изготавливаются из ферромагнитного материала (рис. 6.10). На магнитопроводе располагаются две обмотки – первичная и вторичная. Та из обмоток, которая подключается к источнику переменного напряжения, называется первичной, а та, к которой присоединяют «нагрузку», то есть приборы, потребляющие электроэнергию, называется вторичной. Ферромагнетик увеличивает количество силовых линий магнитного поля приблизительно в 10 000 раз и локализует поток магнитной индукции внутри себя, благодаря чему обмотки трансформатора могут быть пространственно разделены и все же остаются индуктивно связанными.

Действие трансформатора основано на явлениях взаимной индукции и самоиндукции. Индукция между первичной и вторичной обмоткой взаимна, то есть ток, протекающий во вторичной обмотке, индуцирует электродвижущую силу в первичной, точно так же, как первичная обмотка индуцирует электродвижущую силу во вторичной. Более того, поскольку витки первичной обмотки охватывают собственные силовые линии, в них самих возникает электродвижущая сила самоиндукции. Электродвижущая сила самоиндукции наблюдается также и во вторичной обмотке.

Пусть первичная обмотка подсоединяется к источнику переменного тока с электродвижущей силой , поэтому в ней возникает переменный ток , создающий в магнитопроводе трансформатора переменный магнитный поток ?, который сосредотачивается внутри магнитного сердечника и пронизывает все витки первичной и вторичной обмоток.

При отсутствии внешней нагpузки выделяемая в тpансфоpматоpе мощность близка к нулю, то есть близка к нулю сила тока. Применим к первичной цепи закон Ома: сумма электродвижущей силы индукции и напряжения в цепи равна произведению силы тока на сопротивление. Полагая , можно записать: , следовательно, , где Ф – поток пронизывающий каждый виток первичной катушки. В идеальном трансформаторе все силовые линии проходят через все витки обеих обмоток, и поскольку изменяющееся магнитное поле порождает одну и ту же электродвижущую силу в каждом витке, то суммарная электродвижущая сила, индуцируемая в обмотке, пропорциональна полному числу ее витков. Следовательно, .

Коэффициент трансформации напряжения равен отношению напpяжения во вторичной цепи к напряжению в первичной цепи. Для амплитудных значений напряжений на обмотках можно записать:

Таким образом, коэффициент трансформации определяется как отношение числа витков вторичной обмотки к числу витков первичной обмотки. Если коэффициент , трансформатор будет повышающим, а если – понижающим.

Написанные выше соотношения, строго говоря, применимы только к идеальному трансформатору, в котором нет рассеяния магнитного потока и отсутствуют потери энергии на джоулево тепло. Эти потери могут быть связаны с наличием активного сопротивления самих обмоток и возникновением индукционных токов (токов Фуко) в сердечнике.

Токи Фуко.

Токи Фуко. Индукционные токи могут возникать также в сплошных массивных проводниках. При этом замкнутая цепь индукционного тока образуется в толще самого проводника при его движении в магнитном поле или под влиянием переменного магнитного поля. Эти токи названы по имени французского физика Ж.Б.Л. Фуко, который в 1855 г. обнаружил нагревание ферромагнитных сердечников электрических машин и других металлических тел в переменном магнитном поле и объяснил этот эффект возбуждением индукционных токов. Эти токи в настоящее время называются вихревыми токами или токами Фуко.

Если железный сердечник находится в переменном магнитном поле, то в нем под действием индукционного электрического поля наводятся внутренние вихревые токи – токи Фуко, ведущие к его нагреванию. Так как электродвижущая сила индукции всегда пропорциональна частоте колебаний магнитного поля, а сопротивление массивных проводников мало, то при высокой частоте в проводниках будет выделяться, согласно закону Джоуля–Ленца, большое количество тепла.

Во многих случаях токи Фуко бывают нежелательными, поэтому приходится принимать специальные меры для их уменьшения. В частности, эти токи вызывают нагревание ферромагнитных сердечников трансформаторов и металлических частей электрических машин. Для снижения потерь электрической энергии из-за возникновения вихревых токов сердечники трансформаторов изготавливают не из сплошного куска ферромагнетика, а из отдельных металлических пластин, изолированных друг от друга диэлектрической прослойкой.

Вихревые токи широко используются для плавки металлов в так называемых индукционных печах (рис. 6.11), для нагревания и плавления металлических заготовок, получения особо чистых сплавов и соединений металлов. Для этого металлическую заготовку помещают в индукционную печь (соленоид, по которому пропускают переменный ток). Тогда, согласно закону электромагнитной индукции, внутри металла возникают индукционные токи, которые разогревают металл и могут его расплавить. Создавая в печи вакуум и применяя левитационный нагрев (в этом случае силы электромагнитного поля не только разогревают металл, но и удерживают его в подвешенном состоянии вне контакта с поверхностью камеры), получают особо чистые металлы и сплавы.

Источник

Устройство и принцип действия генераторов переменного тока

Электрический генератор тока — это устройство, предназначенное для превращения неэлектрических видов энергии (химической, механической, тепловой) в электрическую. При этом его конструкция базируется на использовании принципа электроманитной индукции.

  1. Принцип действия и устройство простейшего генератора переменного тока
  2. Электрогенераторы переменного тока
  3. Синхронные электрогенераторы
  4. Асинхронные электрогенераторы
  5. Инверторные генераторы
  6. Привод генераторов переменного тока
  7. Опции и возможности бытовых электрогенераторов
  8. Особенности установки
Читайте также:  Источники потребителя тока в машине

Принцип действия и устройство простейшего генератора переменного тока

Электромагнитная индукция — это явление, которое было открыто в 1831 году английским физиком Майклом Фарадеем (1791-1867), обнаружившим, что при прохождении изменяющегося во времени магнитного потока сквозь замкнутый проводящий контур в последнем возникает электрический ток. Именно этот принцип и положен в основу любого генератора.

На практике принцип электромагнитной индукции реализуется следующим образом: электрический ток возникает в замкнутой рамке (роторе) при пересечении ее вращающимся магнитным полем, образуемым в зависимости от назначения и конструкции генератора постоянными магнитами или специальными обмотками возбуждения. При вращении рамки изменяется величина магнитного потока. Чем быстрее она вращается, тем выше величина выходного напряжения.

В 1827 году этот эффект обнаружил и использовал при создании оригинальной модели генератора электрического тока венгерский физик Аньош Иштван Йедлик (1800-1895). Однако, полагая его известным, ученый не запатентовал свое открытие, а о создании первой динамо-машины объявил только в 1850 году.

Для отвода электрического тока рамка оснащается токосъемником, который превращает ее в замкнутый контур и обеспечивает постоянный контакт вращающейся рамки со стационарно расположенными элементами генератора. Подпружиненные щетки прижимаются к коллекторным кольцам и таким образом электрический ток поступает на выходные клеммы генератора.

Вращаясь, половинки рамки последовательно проходят возле полюсов магнита. При этом происходит циклическая смена направления движения возникающего тока – у каждого полюса ток движется в одну сторону.

Конструкция якоря генератора постоянного тока

В зависимости от конструкции коллектора генератор может вырабатывать как постоянный, так и переменный ток.

  • В генераторах постоянного тока для каждой половины обмотки в коллекторном узле имеются изолированные друг от друга полукольца. Благодаря тому, что эти полукольца постоянно меняются щетками, ток не изменяет своего направления, а просто пульсирует.
  • В генераторах переменного тока концы рамки привязаны к контактным кольцам и вся эта конструкция вращается вокруг своей оси. При вращении рамки, щетки, каждая из которых плотно примыкает к своему кольцу, обеспечивают надежный токоотвод. При этом циклической смены положения щеток не происходит.

Вращающаяся часть генератора называется ротором, а неподвижная — статором.

Принцип действия электрогенераторов переменного и постоянного тока идентичен. Отличаются они между собой конструкцией контактных колец, расположенных на вращающемся роторе и конфигурацией обмоток.

В генераторах переменного тока часто используют оригинальное техническое решение, базирующееся на том, что ЭДС возникает в проводнике не только когда он вращается в магнитном поле, но и в том случае, когда относительно неподвижного проводника вращается само магнитное поле.

Этот эффект широко используется разработчиками, которые располагают на вращающемся роторе электрические или постоянные магниты. При этом напряжение снимается со стационарно установленной обмотки, что дает возможность избавиться от сложных конструкций токосъемных узлов.

Электрогенераторы переменного тока

Выпускается огромное количество самых разнообразных электрогенераторов переменного тока. Классифицировать их можно по таким параметрам:

  • конструктивное исполнение;
  • способ возбуждения;
  • количество фаз.

По способу возбуждения потребителю могут встретиться агрегаты:

  • с независимым возбуждением – обмотка возбуждения запитывается постоянным током от независимого источника электропитания;
  • с самовозбуждением – в обмотку возбуждения подается выпрямленный ток от самого генератора;
  • с возбуждением от постоянных магнитов – обмотка возбуждения отсутствует;
  • с возбуждением от возбудителя – маломощного генератора постоянного тока, «сидящего» на одном валу с обслуживаемым генератором.

По количеству фаз электрогенераторы бывают:

  • однофазные;
  • двухфазные;
  • трехфазные.

На практике чаще всего встречаются трехфазные генераторы переменного тока. Связано это с рядом преимуществ, характерных для этого вида агрегатов:

  • получение экономического эффекта при разработке систем передачи электроэнергии на большие расстояния – снижение материалоемкости трансформаторных устройств и силовых проводов; Этому способствует наличие кругового магнитного поля;
  • увеличенный эксплуатационный ресурс, который обеспечивает уравновешенность системы;
  • одновременное использование линейного и фазового напряжения.

Конструктивно трехфазный электрогенератор имеет три независимые обмотки, расположенные в статоре по окружности со смещением в 120° относительно друг друга. При этом каждая обмотка представляет собой однофазный генератор, которая способна подавать переменное напряжение потребителю R. Такая единичная обмотка и получила название «фаза». Фазные обмотки могут соединяться между собой «треугольником» или «звездой».

Существуют и другие схемы соединения обмоток, например, шестипроводная система «Тесла» или соединение «Славянка» (сочетание шести обмоток в виде одной «звезды» и одного «треугольника), однако широкого распространения они не получили.

Роль рамки в устройствах, вырабатывающих переменный ток, исполняет электромагнит, который вращаясь, смещает индуцированные в обмотках переменные ЭДС на треть такта относительно друг друга.

Среди множества генераторов переменного тока различают два основных вида их конструктивного исполнения: синхронные и асинхронные. В последнее время, учитывая большое количество сложных электронных устройств, управляемых при помощи микропроцессоров, появился новый тип электрогенераторов – инверторный.

Синхронные электрогенераторы

Устройство синхронного генератора

Синхронный генератор переменного тока конструктивно состоит из двух частей — подвижного ротора и неподвижного статора.

При вращении ротора, представляющего собой электромагнит с сердечником и обмоткой возбуждения, подключенный к внешнему источнику питания при помощи щеточного механизма, в обмотке статора индуцируется ЭДС, которая подается на выходные клеммы генератора. Такая конструкция исключает необходимость применения скользящих контактов, что существенно упрощает конструкцию агрегата. Изначально магнитный поток возбуждается от стороннего возбудителя, закрепленного на общем валу и подключаемого к системе при помощи муфты.

В синхронных электрогенераторах малой мощности обмотка возбуждения запитывается за счет выпрямленного тока. При этом электрическая цепь образуется за счет активации трансформаторов, входящих в цепь нагрузки. Туда же включен и полупроводниковый выпрямитель. В состав основной электрической цепи входят:

  • обмотка возбуждения;
  • регулировочный реостат.

Основная особенность синхронного генератора — частота генерируемого электрического тока пропорциональна скорости вращения ротора.

Асинхронные электрогенераторы

Асинхронный генератор переменного тока отличается от синхронного отсутствием жесткой связи между частотами вращения ротора и индуцированной ЭДС. Разница между этими параметрами называется «скольжением». Между ротором и статором асинхронного генератора имеется воздушный зазор. При этом на частоту вырабатываемой ЭДС влияет тормозной момент, возникающий при подключении нагрузки и препятствующий вращению ротора. Поэтому электроэнергия в асинхронных электрогенераторах вырабатывается при увеличенной скорости прокручивания ротора.

Конструкция асинхронных генераторов отличается простотой, однако имеет при этом худшие, по сравнению с синхронными агрегатами, технические характеристики — погрешность по частоте может достигать 4%, а по величине напряжения — до 10%. Кроме того асинхронные электрогенераторы критичны к величине пускового тока. Поэтому эксплуатировать их рекомендуется совместно со стабилизаторами, а в отдельных случаях, например, для плавного пуска электродвигателя, может понадобиться преобразователь частоты.

Инверторные генераторы

Инверторный генератор FUBAG Ti 3200

Инверторный электрогенератор — это обычный асинхронный генератор, на выходе которого установлен дополнительный стабилизатор выходных параметров.

Работает он следующим образом: вырабатываемое асинхронным генератором напряжение поступает в инвертор, где сначала выпрямляется, а затем из полученного постоянного напряжения формируются импульсы заданной частоты и скважности. На выходе устройства эти импульсы преобразуются в синусоидальное напряжение с почти идеальными техническими характеристиками.

Привод генераторов переменного тока

Бензиновый генератор Green-Field GF4500E

В бытовых условиях ротор генератора приводят в действие при помощи двигателей внутреннего сгорания (ДВС), работающих на таких видах топлива, как бензин или дизельное топливо. При этом эксплуатационный ресурс бензиновых генераторов, оснащенных двухтактными ДВС составляет порядка 500 часов в год (не более 4 часов в сутки); четырехтактными ДВС достигает 5000 часов в год.

Использовать бензиновые электрогенераторы целесообразно при непродолжительных отключениях электричества и/или для выезда на природу.

Генераторы, работающие на дизельном топливе, отличаются большой мощностью и значительно долговечнее бензиновых. Среди них встречаются модели с воздушным и жидкостным охлаждением. Агрегаты с воздушным охлаждением рекомендуется применять в тех местах, где электричество отключают часто и надолго.

Дизельный генератор ONIS VISA P 14 FOX

Пользоваться такими бытовыми устройствами предельно просто – нужно залить топливо в бак, поворотом ключа запустить двигатель и подключить нагрузку. Их панель управления снабжена всеми необходимыми и интуитивно понятными надписями и обозначениями.

Дизельные электрогенераторы с жидкостным охлаждением – это устройства совсем другой категории. Они способны работать сутками и используются в основном на предприятиях в качестве источников резервного питания.

Промышленные генераторы, предназначенные для выработки переменного тока и подачи его потребителям на большие расстояния с помощью высоковольтных линий электропередач (ЛЭП), работают за счет активации гидравлических или паровых турбин. В таких агрегатах роторный механизм соединяется непосредственно с колесом турбины.

Турбинные электрогенераторы отличаются большой мощностью (до 100000 кВт) и способны генерировать переменный ток напряжением до 16 кВ. При этом длина и диаметр их ротора может достигать 6,5 и 15 метров соответственно, а скорость вращения последнего находится в диапазоне 1500…3000 об/мин. Устанавливают такие агрегаты в отдельных помещениях на специально подготовленных бетонных основаниях.

Опции и возможности бытовых электрогенераторов

Для удобства эксплуатации производители оснащают свою продукцию рядом полезных опций, среди которых можно выделить:

  • устройство автоматического запуска агрегата при отключении электроэнергии;
  • наличие встроенного УЗО, отключающего устройство от электросети при пробое изоляции и появлении тока утечки;
  • контроль параметров и отображение их на дисплее;
  • защита от перегрузки.

При подключении к электрогенератору нагрузки, величина которой буде ниже паспортной, агрегат начнет «съедать» часть жидкого топлива впустую, не используя полностью свои возможности.

Не будет лишним наличие в комплекте поставки специального шумогасящего кожуха, топливного бака увеличенного объема, кожуха, защищающего агрегат от воздействия низкой температуры и пр.

Читайте также:  Направление тока в цепи переменного напряжения

Особенности установки

Использование дизельного генератора

Потенциальный владелец генератора переменного тока перед приобретением должен озаботиться подготовкой места для его установки. Независимо от того, где будет установлен такой агрегат, в помещении или на свежем воздухе, для него понадобится ровная и твердая площадка. Установка электрогенератора на неровной площадке приведет к увеличению вибрации, что ускорит износ деталей и может спровоцировать выход дорогостоящего устройства из строя.

Устанавливая генератор в помещении, важно предусмотреть наличие вытяжной вентиляции. Кроме того, во время работы агрегата рекомендуется оставлять дверь помещения открытой, что в свою очередь потребует установить в дверном проеме решетку, перекрывающую посторонним, а главное детям, доступ в опасную зону.

Соединяют электрогенератор с электросетью в строгом соответствии с требованиями, изложенными в инструкции по эксплуатации. При этом электрический кабель необходимо подключить после вводного автомата и электросчетчика.

Источник

ИНФОФИЗ — мой мир.

Весь мир в твоих руках — все будет так, как ты захочешь

Весь мир в твоих руках — все будет так, как ты захочешь

  • Главная
  • Мир физики
    • Физика в формулах
    • Теоретические сведения
    • Физический юмор
    • Физика вокруг нас
    • Физика студентам
      • Для рефератов
      • Экзамены
      • Лекции по физике
      • Естествознание
  • Мир астрономии
    • Солнечная система
    • Космонавтика
    • Новости астрономии
    • Лекции по астрономии
    • Законы и формулы — кратко
  • Мир психологии
    • Физика и психология
    • Психологическая разгрузка
    • Воспитание и педагогика
    • Новости психологии и педагогики
    • Есть что почитать
  • Мир технологий
    • World Wide Web
    • Информатика для студентов
      • 1 курс
      • 2 курс
    • Программное обеспечение компьютерных сетей
      • Мои лекции
      • Для студентов ДО
      • Методические материалы
  • Физика школьникам
  • Физика студентам
  • Астрономия
  • Информатика
  • ПОКС
  • Арх ЭВМ и ВС
  • Методические материалы
  • Медиа-файлы
  • Тестирование

Как сказал.

Есть только два способа прожить жизнь. Первый — будто чудес не существует. Второй — будто кругом одни чудеса.

А.Эйнштейн

Вопросы к экзамену

Для всех групп технического профиля

Урок 43-3 Устройство и принцип работы генератора переменного тока

Рассмотрим замкнутый контур (рамку) площадью S, помещенный в однородное магнитное поле, индукция которого равна B. Контур равномерно вращается вокруг оси OO’ с угловой скоростью ω.

Магнитный поток, пронизывающий контур, определяется формулой Ф = BS cosΔφ, где Δφ — угол между вектором нормали n к плоскости контура и вектором В. Рамка вращается внутри магнита с частотой v, и за время t совершает N = vt оборотов. За оборот рамка поворачивается на угол 2π рад. Угол на который поворачивается рамка за время t: Δφ = 2π vt = ωt, тогда изменение магнитного потока ΔФ = BS cos Δφ = BS cos ωt .

В замкнутом контуре возникает э.д.с. индукции, которая по закону электромагнитной индукции равна скорости изменения магнитного потока .

Тогда получим мгновенное значение э.д.с.

e = — Ф’ = — (BS cos ωt)’ = BSω sin ωt

Следовательно э.д.с. индукции, возникающая в замкнутом контуре, при его равномерном вращении в однородном магнитном поле меняется со временем по закону синуса. Э.д.с. индукции максимальна при sin ωt = 1, т.е. α = ωt = π/2

Величина ε = ωBS – называется амплитудным значением э.д.с. индукции.

Если такой контур замкнуть на внешнюю цепь, то по цепи пойдет ток, сила и направление которого изменяются. Такая рамка, вращающаяся в магнитном поле является простейшимгенератором переменного тока.

В нашей стране используется переменный ток частотой 50 Гц (в США – 60 Гц). Такой ток вырабатывается генераторами.

Генераторы электрического тока – это устройства для преобразования различных видов энергии – механической, химической, тепловой, световой и др. – в электрическую.

Работа генератора переменного тока основана на явлении электромагнитной индукции.

В настоящее время имеется много различных типов генераторов. Но все они состоят из одних и тех нее основных частей. Это, во-первых, электромагнит или постоянный магнит, создающий магнитное поле, и, во-вторых, обмотка, в которой индуцируется переменная ЭДС — электродвижущая сила (в рассмотренной модели генератора это вращающаяся рамка).

Неподвижную часть генератора называют статором, а подвижную – ротором.

Так как ЭДС, наводимые в последовательно соединенных витках, складываются, то амплитуда ЭДС индукции в рамке пропорциональна числу витков в ней. Она пропорциональна также амплитуде переменного магнитного потока (Фm = BS) через каждый виток.

В изображенной на рисунке модели генератора вращается проволочная рамка, которая является ротором. Магнитное поле создает неподвижный постоянный магнит. Разумеется, можно было бы поступить и наоборот: вращать магнит, а рамку оставить неподвижной. К концам обмотки ротора присоединены контактные кольца. Неподвижные пластины — щетки — прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью.

Модель генератора переменного тока.

Промышленные генераторы имеют намного большие размеры, для увеличения напряжения, снимаемого с клемм генератора, на рамки наматывают не один, а много витков. Во всех промышленных генераторах переменного тока витки, в которых индуцируется переменный ток, устанавливают неподвижно, а вращается магнитная система. Если ротор вращать с помощью внешней силы, то вместе с ротором будет вращаться и магнитное поле, создаваемое им, при этом в проводниках статора будет индуцироваться э.д.с.

Принцип действия генератора переменного тока следующий. Для получения большого магнитного потока в генераторах применяют специальную магнитную систему, состоящую из двух сердечников, сделанных из электротехнической стали. Обмотки, создающие магнитное поле, размещены в пазах одного из сердечников, а обмотки, в которых индуцируется ЭДС, — в пазах другого. Один из сердечников (обычно внутренний) вместе со своей обмоткой вращается вокруг горизонтальной или вертикальной оси. Поэтому он называется ротором. Неподвижный сердечник с его обмоткой называют статором. Зазор между сердечниками статора и ротора делают как можно меньшим для увеличения потока магнитной индукции.

В больших промышленных генераторах вращается именно электромагнит, который является ротором, в то время как обмотки, в которых наводится ЭДС, уложены в пазах статора и остаются неподвижными. Дело в том, что подводить ток к ротору или отводить его из обмотки ротора во внешнюю цепь приходится при помощи скользящих контактов. Для этого ротор снабжается контактными кольцами, присоединенными к концам его обмотки.

Структурная схема генератора переменного тока.

Неподвижные пластины — щетки — прижаты к кольцам и осуществляют связь обмотки ротора с внешней цепью. Сила тока в обмотках электромагнита, создающего магнитное поле, значительно меньше силы тока, отдаваемого генератором во внешнюю цепь. Поэтому генерируемый ток удобнее снимать с неподвижных обмоток, а через скользящие контакты подводить сравнительно слабый ток к вращающемуся электромагниту. Этот ток вырабатывается отдельным генератором постоянного тока (возбудителем), расположенным на том левее валу (В настоящее время постоянный ток в обмотку ротора чаще всего подают из статорной обмотки этого же генератора через выпрямитель).

В маломощных генераторах магнитное поле создается вращающимся постоянным магнитом. В таком случае кольца и щетки вообще не нужны.

Появление ЭДС в неподвижных обмотках статора объясняется возникновением в них вихревого электрического поля, порожденного изменением магнитного потока при вращении ротора.
Современный генератор электрического тока — это внушительное сооружение из медных проводов, изоляционных материалов и стальных конструкций. При размерах в несколько метров важнейшие детали генераторов изготовляются с точностью до миллиметра. Нигде в природе нет такого сочетания движущихся частей, которые могли бы порождать электрическую энергию столь же непрерывно и экономично.

Источник



Электромагнитная индукция

Явление электромагнитной индукции

Электромагнитная индукция – явление возникновения тока в замкнутом проводящем контуре при изменении магнитного потока, пронизывающего его.

Явление электромагнитной индукции было открыто М. Фарадеем.

  • На одну непроводящую основу были намотаны две катушки: витки первой катушки были расположены между витками второй. Витки одной катушки были замкнуты на гальванометр, а второй – подключены к источнику тока. При замыкании ключа и протекании тока по второй катушке в первой возникал импульс тока. При размыкании ключа также наблюдался импульс тока, но ток через гальванометр тек в противоположном направлении.
  • Первая катушка была подключена к источнику тока, вторая, подключенная к гальванометру, перемещалась относительно нее. При приближении или удалении катушки фиксировался ток.
  • Катушка замкнута на гальванометр, а магнит движется – вдвигается (выдвигается) – относительно катушки.

Опыты показали, что индукционный ток возникает только при изменении линий магнитной индукции. Направление тока будет различно при увеличении числа линий и при их уменьшении.

Сила индукционного тока зависит от скорости изменения магнитного потока. Может изменяться само поле, или контур может перемещаться в неоднородном магнитном поле.

Объяснения возникновения индукционного тока

Ток в цепи может существовать, когда на свободные заряды действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура равна ЭДС. Значит, при изменении числа магнитных линий через поверхность, ограниченную контуром, в нем появляется ЭДС, которую называют ЭДС индукции.

Читайте также:  Схема подключения пускателя переменного тока

Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 году.

Свойства вихревого электрического поля:

  • источник – переменное магнитное поле;
  • обнаруживается по действию на заряд;
  • не является потенциальным;
  • линии поля замкнутые.

Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике.

Магнитный поток

Магнитным потоком через площадь ​ \( S \) ​ контура называют скалярную физическую величину, равную произведению модуля вектора магнитной индукции ​ \( B \) ​, площади поверхности ​ \( S \) ​, пронизываемой данным потоком, и косинуса угла ​ \( \alpha \) ​ между направлением вектора магнитной индукции и вектора нормали (перпендикуляра к плоскости данной поверхности):

Обозначение – ​ \( \Phi \) ​, единица измерения в СИ – вебер (Вб).

Магнитный поток в 1 вебер создается однородным магнитным полем с индукцией 1 Тл через поверхность площадью 1 м 2 , расположенную перпендикулярно вектору магнитной индукции:

Магнитный поток можно наглядно представить как величину, пропорциональную числу магнитных линий, проходящих через данную площадь.

В зависимости от угла ​ \( \alpha \) ​ магнитный поток может быть положительным ( \( \alpha \) \( \alpha \) > 90°). Если \( \alpha \) = 90°, то магнитный поток равен 0.

Изменить магнитный поток можно меняя площадь контура, модуль индукции поля или расположение контура в магнитном поле (поворачивая его).

В случае неоднородного магнитного поля и неплоского контура магнитный поток находят как сумму магнитных потоков, пронизывающих площадь каждого из участков, на которые можно разбить данную поверхность.

Закон электромагнитной индукции Фарадея

Закон электромагнитной индукции (закон Фарадея):

ЭДС индукции в замкнутом контуре равна и противоположна по знаку скорости изменения магнитного потока через поверхность, ограниченную контуром:

Знак «–» в формуле позволяет учесть направление индукционного тока. Индукционный ток в замкнутом контуре имеет всегда такое направление, чтобы магнитный поток поля, созданного этим током сквозь поверхность, ограниченную контуром, уменьшал бы те изменения поля, которые вызвали появление индукционного тока.

Если контур состоит из ​ \( N \) ​ витков, то ЭДС индукции:

Сила индукционного тока в замкнутом проводящем контуре с сопротивлением ​ \( R \) ​:

При движении проводника длиной ​ \( l \) ​ со скоростью ​ \( v \) ​ в постоянном однородном магнитном поле с индукцией ​ \( \vec \) ​ ЭДС электромагнитной индукции равна:

где ​ \( \alpha \) ​ – угол между векторами ​ \( \vec \) ​ и \( \vec \) .

Возникновение ЭДС индукции в движущемся в магнитном поле проводнике объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю.

Количество теплоты в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

Важно!
Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам:

  • магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле;
  • вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея.

Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной:

  • в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца;
  • в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Правило Ленца

Направление индукционного тока определяется по правилу Ленца: индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток.

Алгоритм решения задач с использованием правила Ленца:

  • определить направление линий магнитной индукции внешнего магнитного поля;
  • выяснить, как изменяется магнитный поток;
  • определить направление линий магнитной индукции магнитного поля индукционного тока: если магнитный поток уменьшается, то они сонаправлены с линиями внешнего магнитного поля; если магнитный поток увеличивается, – противоположно направлению линий магнитной индукции внешнего поля;
  • по правилу буравчика, зная направление линий индукции магнитного поля индукционного тока, определить направление индукционного тока.

Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.

Самоиндукция

Самоиндукция – это явление возникновения ЭДС индукции в проводнике в результате изменения тока в нем.

При изменении силы тока в катушке происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока, пронизывающего катушку, должно вызывать появление ЭДС индукции в катушке.

В соответствии с правилом Ленца ЭДС самоиндукции препятствует нарастанию силы тока при включении и убыванию силы тока при выключении цепи.

Это приводит к тому, что при замыкании цепи, в которой есть источник тока с постоянной ЭДС, сила тока устанавливается через некоторое время.

При отключении источника ток также не прекращается мгновенно. Возникающая при этом ЭДС самоиндукции может превышать ЭДС источника.

Явление самоиндукции можно наблюдать, собрав электрическую цепь из катушки с большой индуктивностью, резистора, двух одинаковых ламп накаливания и источника тока. Резистор должен иметь такое же электрическое сопротивление, как и провод катушки.

Опыт показывает, что при замыкании цепи электрическая лампа, включенная последовательно с катушкой, загорается несколько позже, чем лампа, включенная последовательно с резистором. Нарастанию тока в цепи катушки при замыкании препятствует ЭДС самоиндукции, возникающая при возрастании магнитного потока в катушке.

При отключении источника тока вспыхивают обе лампы. В этом случае ток в цепи поддерживается ЭДС самоиндукции, возникающей при убывании магнитного потока в катушке.

ЭДС самоиндукции ​ \( \varepsilon_ \) ​, возникающая в катушке с индуктивностью ​ \( L \) ​, по закону электромагнитной индукции равна:

ЭДС самоиндукции прямо пропорциональна индуктивности катушки и скорости изменения силы тока в катушке.

Индуктивность

Электрический ток, проходящий по проводнику, создает вокруг него магнитное поле. Магнитный поток ​ \( \Phi \) ​ через контур из этого проводника пропорционален модулю индукции ​ \( \vec \) ​ магнитного поля внутри контура, а индукция магнитного поля, в свою очередь, пропорциональна силе тока в проводнике.

Следовательно, магнитный поток через контур прямо пропорционален силе тока в контуре:

Индуктивность – коэффициент пропорциональности ​ \( L \) ​ между силой тока ​ \( I \) ​ в контуре и магнитным потоком ​ \( \Phi \) ​, создаваемым этим током:

Индуктивность зависит от размеров и формы проводника, от магнитных свойств среды, в которой находится проводник.

Единица индуктивности в СИ – генри (Гн). Индуктивность контура равна 1 генри, если при силе постоянного тока 1 ампер магнитный поток через контур равен 1 вебер:

Можно дать второе определение единицы индуктивности: элемент электрической цепи обладает индуктивностью в 1 Гн, если при равномерном изменении силы тока в цепи на 1 ампер за 1 с в нем возникает ЭДС самоиндукции 1 вольт.

Энергия магнитного поля

При отключении катушки индуктивности от источника тока лампа накаливания, включенная параллельно катушке, дает кратковременную вспышку. Ток в цепи возникает под действием ЭДС самоиндукции.

Источником энергии, выделяющейся при этом в электрической цепи, является магнитное поле катушки.

Для создания тока в контуре с индуктивностью необходимо совершить работу на преодоление ЭДС самоиндукции. Энергия магнитного поля тока вычисляется по формуле:

Основные формулы раздела «Электромагнитная индукция»

Алгоритм решения задач по теме «Электромагнитная индукция»:

1. Внимательно прочитать условие задачи. Установить причины изменения магнитного потока, пронизывающего контур.

2. Записать формулу:

  • закона электромагнитной индукции;
  • ЭДС индукции в движущемся проводнике, если в задаче рассматривается поступательно движущийся проводник; если в задаче рассматривается электрическая цепь, содержащая источник тока, и возникающая на одном из участков ЭДС индукции, вызванная движением проводника в магнитном поле, то сначала нужно определить величину и направление ЭДС индукции. После этого задача решается по аналогии с задачами на расчет цепи постоянного тока с несколькими источниками.

3. Записать выражение для изменения магнитного потока и подставить в формулу закона электромагнитной индукции.

4. Записать математически все дополнительные условия (чаще всего это формулы закона Ома для полной цепи, силы Ампера или силы Лоренца, формулы кинематики и динамики).

5. Решить полученную систему уравнений относительно искомой величины.

Источник