Меню

Электрический ток проводимости электропроводность вещества

Электропроводность веществ

Примечания

  1. — статья из Большой советской энциклопедии
  2. Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. — М. : Издательство стандартов, 1990. — С. 105. — 240 с. — ISBN 5-7050-0118-5.
  3. В случае совпадения двух из трех собственных чисел σi<\displaystyle \sigma _>, есть произвол в выборе такой системы координат (собственных осей тензора σ<\displaystyle \sigma >), а именно довольно очевидно, что можно произвольно повернуть её относительно оси с отличающимся собственным числом, и выражение не изменится. Однако это не слишком меняет картину. В случае же совпадения всех трех собственных чисел мы имеем дело с изотропной проводимостью, и, как легко видеть, умножение на такой тензор сводится к умножению на скаляр.
  4. Для многих сред линейное приближение является достаточно хорошим или даже очень хорошим для достаточно широкого диапазона величин электрического поля, однако существуют среды, для которых это совсем не так уже при весьма малых E.
  5. Впрочем, если речь идет об однородном веществе, как правило, если что-то подобное имеет место, проще описать коллективное возмущение как квазичастицу.
  6. Здесь мы для простоты не рассматриваем анизотропных кристаллов с тензорной подвижностью, считая μ скаляром; впрочем, при желании можно считать его тензором, понимая произведение μE→<\displaystyle \mu <\vec >> в матричном смысле.
  7. Кухлинг Х. Справочник по физике. Пер. с нем., М.: Мир, 1982, стр. 475 (табл. 39); значения удельной проводимости вычислены из удельного сопротивления и округлены до 3 значащих цифр.
  8. В.Г.Герасимов, П.Г.Грудинский, Л.А.Жуков. Электротехнический справочник. В 3-х томах. Т.1 Общие вопросы. Электротехнические материалы / Под общей редакцией профессоров МЭИ. — 6-е изд.. — Москва: Энергия, 1980. — С. 353. — 520 с. — ISBN ББК 31.2.
  9. В.Г.Герасимов, П.Г.Грудинский, Л.А.Жуков. Электротехнический справочник. В 3-х томах. Т.1 Общие вопросы. Электротехнические материалы. / под общей редакцией профессоров МЭИ. — 6-е издание. — Москва: Энергия, 1980. — С. 364. — 520 с. — ISBN ББК 31.2.

Электропроводность и носители тока

Электропроводность всех веществ связана с наличием в них носителей тока (носителей заряда) — подвижных заряженных частиц (электронов, ионов) или квазичастиц (например, дырок в полупроводнике), способных перемещаться в данном веществе на большое расстояние, упрощенно можно сказать, что имеется в виду что такая частица или квазичастица должна быть способна пройти в данном веществе сколь угодно большое, по крайней мере макроскопическое, расстояние, хотя в некоторых частных случаях носители могут меняться, рождаясь и уничтожаясь (вообще говоря, иногда, возможно, и через очень небольшое расстояние), и переносить ток, сменяя друг друга.

Поскольку плотность тока определяется формулой

j→=qnv→cp.<\displaystyle <\vec >=qn<\vec >_> для одного типа носителей, где q — заряд одного носителя, n — концентрация носителей, vср. — средняя скорость их движения,

j→=∑iqiniv→icp.<\displaystyle <\vec >=\sum _q_n_<\vec >_> для более чем одного вида носителей, нумеруемых индексом i, принимающим значение от 1 до количества типов носителей, у каждого из которых может быть свой заряд (отличающийся величиной и знаком), своя концентрация, своя средняя скорость движения (суммирование в этой формуле подразумевается по всем имеющимся типам носителей),

то, учитывая, что (установившаяся) средняя скорость каждого типа частиц при движении в конкретном веществе (среде) пропорциональна приложенному электрическому полю (в том случае, когда движение вызвано именно этим полем, что мы здесь и рассматриваем):

где μ — коэффициент пропорциональности, называемый подвижностью и зависящий от вида носителя тока в данной конкретной среде,

видим, что для электропроводности справедливо:

Удельная электропроводность[править | править код]

Удельной электропроводностью (удельной проводимостью) называют меру способности вещества проводить электрический ток. Согласно закону Ома в линейном изотропном веществе удельная проводимость является коэффициентом пропорциональности между плотностью возникающего тока и величиной электрического поля в среде:

σ <\displaystyle \sigma >— удельная проводимость, J→<\displaystyle <\vec >> — вектор плотности тока, E→<\displaystyle <\vec >> — вектор напряжённости электрического поля.

Электрическая проводимость G однородного проводника длиной L с постоянным поперечным сечением площадью S может быть выражена через удельную проводимость вещества, из которого сделан проводник:

В системе СИ удельная электропроводность измеряется в сименсах на метр (См/м) или в Ом−1·м−1. В СГСЭ единицей удельной электропроводности является обратная секунда (с−1).

Электропроводность веществ Электропроводность — википедия переиздание // wiki 2 Электропроводность — википедия. что такое электропроводность Электропроводность — википедия. что такое электропроводность Электронная проводимость металлов Электропроводность - википедия Электропроводность википедия Электрическая проводимость википедия Удельная проводимость википедия Проводимость электрическая википедия

В неоднородной среде σ может зависеть (и в общем случае зависит) от координат, то есть не совпадает в различных точках проводника.

Удельная проводимость анизотропных (в отличие от изотропных) сред является, вообще говоря, не скаляром, а тензором (симметричным тензором ранга 2), и умножение на него сводится к матричному умножению:

при этом векторы плотности тока и напряжённости поля в общем случае не коллинеарны.

Для любой линейной среды можно выбрать локально (а если среда однородная, то и глобально) т. н. собственный базис — ортогональную систему декартовых координат, в которых матрица σik<\displaystyle \sigma _> становится диагональной, то есть приобретает вид, при котором из девяти компонент σik<\displaystyle \sigma _> отличными от нуля являются лишь три: σ11<\displaystyle \sigma _<11>>, σ22<\displaystyle \sigma _<22>> и σ33<\displaystyle \sigma _<33>>. В этом случае, обозначив σii<\displaystyle \sigma _> как σi<\displaystyle \sigma _>, вместо предыдущей формулы получаем более простую

Величины σi<\displaystyle \sigma _> называют главными значениями тензора удельной проводимости. В общем случае приведённое соотношение выполняется только в одной системе координат.

Величина, обратная удельной проводимости, называется удельным сопротивлением.

Вообще говоря, линейное соотношение, написанное выше (как скалярное, так и тензорное), верно в лучшем случае приближённо, причём приближение это хорошо только для сравнительно малых величин E. Впрочем, и при таких величинах E, когда отклонения от линейности заметны, удельная электропроводность может сохранять свою роль в качестве коэффициента при линейном члене разложения, тогда как другие, старшие, члены разложения дадут поправки, обеспечивающие хорошую точность.

Проводимость википедия Электропроводность воды, или что такое кондуктометрия Электропроводность Электропроводность Электропроводность Электропроводность Электронная проводимость металлов Электропроводность Электропроводность

Также в случае нелинейной зависимости J от E (то есть в общем случае) может явно вводиться дифференциальная удельная электропроводность, зависящая от E:

Электропроводность растворов

Скорость движения ионов зависит от напряженности электрического поля, температуры, вязкости раствора, радиуса и заряда иона и межионного взаимодействия.

У растворов сильных электролитов наблюдается характер концентрационной зависимости электрической проводимости объясняется действием двух взаимнопротивоположных эффектов. С одной стороны, с ростом разбавления уменьшается число ионов в единице объёма раствора. С другой стороны, возрастает их скорость за счет ослабления торможения ионами противоположного знака.

Для растворов слабых электролитов наблюдается характер концентрационной зависимости электрической проводимости можно объяснить тем, что рост разбавления ведёт, с одной стороны, к уменьшению концентрации молекул электролита. В то же время возрастает число ионов за счёт роста степени ионизации.

В отличие от металлов (проводники 1-го рода) электрическая проводимость растворов как слабых, так и сильных электролитов (проводники 2-го рода) при повышении температуры возрастает. Этот факт можно объяснить увеличением подвижности в результате понижения вязкости раствора и ослаблением межионного взаимодействия

Электрофоретический эффект — возникновение торможения носителей вследствие того, что ионы противоположного знака под действием электрического поля двигаются в направлении, обратном направлению движения рассматриваемого иона

Релаксационый эффект — торможение носителей в связи с тем, что ионы при движении расположены асимметрично по отношению к их ионным атмосферам. Накопление зарядов противоположного знака в пространстве за ионом приводит к торможению его движения.

Электропроводность Электропроводность Электрическая проводимость Удельная электропроводность Удельная проводимость Проводимость электрическая Проводимость Электропроводность веществ

При больших напряжениях электрического поля скорость движения ионов настолько велика, что ионная атмосфера не успевает образоваться. В результате электрофоретическое и релаксационное торможение не проявляется.

Электропроводность металлов[править | править код]

Ещё до открытия электронов было обнаружено, что протекание тока в металлах, в отличие от тока в жидких электролитах, не обусловлено переносом вещества металла. Эксперимент, который выполнил немецкий физик Карл Виктор Эдуард Рикке (Riecke Carl Viktor Eduard) в 1901 году, состоял в том, что через контакты различных металлов, — двух медных и одного алюминиевого цилиндра с тщательно отшлифованными торцами, поставленными один на другой, в течение года пропускался постоянный электрический ток. Затем исследовался состав материала вблизи контактов. Оказалось, что переноса вещества металла через границу не происходит и вещество по разные стороны границы раздела имеет тот же состав, что и до пропускания тока. Таким образом было показано, что перенос электрического тока осуществляется не атомами и молекулами металлов. Однако эти опыты не дали ответа на вопрос о природе носителей заряда в металлах.

Связь с коэффициентом теплопроводностиправить | править код

Основная статья: Закон Видемана — Франца

Закон Видемана — Франца, выполняющийся для металлов при высоких температурах, устанавливает однозначную связь удельной электрической проводимости σ <\displaystyle \sigma >с коэффициентом теплопроводности K:

где k — постоянная Больцмана, e — элементарный заряд. Эта связь основана на том факте, что как электропроводность, так и теплопроводность в металлах обусловлены движением свободных электронов проводимости.

Источник

Электрический ток и его основные характеристики. Электропроводность веществ

Свободные электроны находятся в состоянии беспорядочного движения (рис. 1.8.а). Если внести электрический проводник в электрическое поле, то свободные электроны под действием сил поля начнут перемещаться в сторону положительного полюса, создавая электрический ток. Поэтому электрическим током I в металлических проводниках называется упорядоченное (направленное) движение заряженных частиц (электронов) (рис. 1.8.б).

Рисунок 1.8. Схема возникновения электрического тока в металлических проводниках:

а) беспорядочное движение электронов; б) упорядоченное движение электронов

Электрическое поле распространяется со скоростью 300000 км в секунду, с такой же скоростью проходит электрический ток, хотя электроны движутся со скорость несколько мм или см в секунду.

Единица измерения силы тока — ампер A: это такой ток, при котором через поперечное сечение проводника каждую секунду проходит 1 кулон электричества.

При движении свободных электронов в проводнике они сталкиваются с ионами и атомами вещества, из которого сделан проводник, и передают им часть своей энергии, которая выделяется в виде тепла, нагревающего проводник.

Электроны, сталкиваясь с частицами проводника, преодолевают это сопротивление движению, т.е. проводники обладают электрическим сопротивлением.

Противодействие проводника прохождению электрического тока называется электрическим сопротивлением R.Единицы измерения —Ом. Сопротивлением 1 Ом обладает проводник, по которому проходит ток 1 А при разности потенциалов на его концах (напряжении), равной 1 В.

Если сопротивление мало, проводник слабо нагревается током. Если сопротивление велико, проводник может раскалиться.

Провода, проводящие электрический ток к электрической плитке, почти не нагреваются, т.к. их сопротивление мало. Спираль плитки, обладающая большим сопротивлением, раскаляется докрасна. Ещё сильнее накаляется нить электрической лампы.

Свойство вещества проводить электрический ток под действием электрического поля называется электропроводностью G. Электропроводность– величина обратная сопротивлению. Единица измерения – сименс (См). G=1/R (См).

Электропроводность веществ зависит от концентрации свободных электрически заряженных частиц. Чем больше концентрация этих частиц, тем больше электропроводность данного вещества.

Все вещества в зависимости от электропроводимости условно делятся на проводники, полупроводники и диэлектрики.

Проводники обладают очень высокой электропроводностью. Существует два рода проводников, которые различаются физической природой протекания электрического тока.

· Это металлы – ток в них обусловлен движением свободных электронов (электронная проводимость) и;

· электролиты (растворы кислот, щелочей и солей) – прохождение тока в них связано с движением электрически заряженных частей молекул – положительных и отрицательных ионов (ионная проводимость).

Материал проводника Электрическое сопротивление, R, Ом
Серебро Медь (применяется наиболее часто) Алюминий (применяется часто) Железо (применяется редко) 1,6 1,7 2,9 9,8

Полупроводники– имеют мало свободных электронов. В обычном состоянии плохо проводят ток. Но при определённых посторонних воздействиях электроны могут покидать атомы и становятся проводниками.

Чистые полупроводники: германий и кремний; примеси пятивалентные: мышьяк или сурьма; примеси трёхвалентные: индий и галлий.

Диэлектрики(изоляторы) – не проводят электрический ток. В них электроны очень крепко связаны со своими атомами.

Жидкие и полужидкие диэлектрики: минеральные масла (трансформаторное, конденсаторное), растительное (касторовое), синтетические (совол, совтол), вазелин.

Твёрдые диэлектрики: высокополимеры, пластмассы, керамика, слюда, электрокартон.

Атомы разных веществ оказывают прохождению электрического тока неодинаковое сопротивление. О способности отдельных веществ проводить электрический ток судят по их удельному электрическому сопротивлению ρ. За величину, характеризующую удельное сопротивление ρ,принимается сопротивление куба с ребром 1м. [Ом/м]

Для суждения об электропроводности материала пользуются понятием удельная электрическая проводимость σ. Удельная проводимость (σ) – проводимость куба с ребром 1 м. Измеряется вСм/м. (σ)=1/(ρ) (См/м)

Сопротивление прямолинейного проводника (шины, ленты) зависит не только от материала проводника, но и его длины и площади поперечного сечения. (Электрическое сопротивление подобно сопротивлению, оказываемому движению воды в трубе, которое зависит от площади сечения трубы и её длины). R= ρ∙l/s (Ом); ρ [Ом∙м/мм 2 ]

Электропроводность всех материалов зависит от их температуры. В металлических проводниках при нагревании размах и скорость колебаний атомов в кристаллической решётке металла увеличивается, отчего возрастает и сопротивление, которое они оказывают потоку электронов. При охлаждении происходит обратное явление: беспорядочное колебание атомов уменьшается, сопротивление их потоку электронов понижается и электропроводность проводника возрастает.

Однако, у таких сплавов, как фехраль, нихром, константан, менганин и др. в определённом интервале температур электрическое сопротивление меняется сравнительно мало. Эти сплавы применяют для изготовления резисторов, используемых в электроизмерительных приборах и некоторых аппаратах для компенсации влияния температуры на их работу.

Чем меньше сопротивление проводника, тем больше его проводимость, и следовательно, он лучше проводит ток.

Контрольные вопросы

1. Дайте определение электрического тока.

2. В каких единицах измеряется электрический ток?

3. Какие виды токов Вы знаете?

4. Дайте определение пульсирующего тока.

5. Какой ток называется импульсным?

6. Единицей электрического заряда принято считать …..

7. Удельная проводимость – это …..

8. Что такое сопротивление электрического тока?

9. Какие носители электричества создают в веществе, помещенном в электрическое поле, процесс движения?

10. Какой ток называется переменным?

11. Как условно делятся вещества в зависимости от электропроводности

12. Сопротивление куба с ребром 1м называется …..

13. Способность материала проводить электрический ток, называется …..

14. Как температура проводника влияет на его электропроводность?

15. Назовите единицы измерения электропроводности?

16. От чего зависит электропроводность вещества?

17. Дайте определение, что такое проводник.

18. Дайте определение, что такое диэлектрик.

19. Дайте определение, что такое полупроводник.

20. Дайте определение постоянного тока.

21. Назовите единицы измерения сопротивления.

22. Дайте определение удельной проводимости.

23. Дайте определение удельного сопротивления.

24. Назовите факторы, влияющие на сопротивление линейного проводника.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Электрическая проводимость

Электри́ческая проводи́мость (электропроводность, проводимость) — способность тела проводить электрический ток, а также физическая величина, характеризующая эту способность и обратная электрическому сопротивлению. В СИ единицей измерения электрической проводимости является сименс (называемая также в некоторых странах Мо) [1] .

Содержание

Удельная проводимость

Удельной проводимостью (удельной электропроводностью) называют меру способности вещества проводить электрический ток. Согласно закону Ома в линейном изотропном веществе удельная проводимость является коэффициентом пропорциональности между плотностью возникающего тока и величиной электрического поля в среде:

\vec J = \sigma \, \vec E,

  • \sigma— удельная проводимость,
  • \vec J— вектор плотности тока,
  • \vec E— вектор напряжённости электрического поля.

В неоднородной среде σ может зависеть (и в общем случае зависит) от координат, то есть не совпадает в различных точках проводника.

Удельная проводимость анизотропных (в отличие от изотропных) сред является, вообще говоря, не скаляром, а тензором (симметричным тензором ранга 2), и умножение на него сводится к матричному умножению:

J_i = \sum\limits_<k=1 data-lazy-src=

(но такое соотношение для анизотропной среды реализуется только в одних выделенных координатах) [2]

Величина, обратная удельной проводимости, называется удельным сопротивлением.

Вообще говоря, линейное соотношение, написанное выше (как скалярное, так и тензорное), верно в лучшем случае [3] приближённо, причём приближение это хорошо только для сравнительно малых величин E . Впрочем, и при таких величинах E , когда отклонения от линейности заметны, удельная электропроводность может сохранять свою роль в качестве коэффициента при линейном члене разложения, тогда как другие, старшие, члены разложения дадут поправки, обеспечивающие хорошую точность. В случае нелинейной зависимости J от E вводится дифференциальная удельная электропроводность \sigma = dJ/ dE(для анизотропных сред: \sigma_i = dJ_i/ dE_i).

Электрическая проводимость G проводника длиной L с площадью поперечного сечения S может быть выражена через удельную проводимость вещества, из которого сделан проводник, следующей формулой:

G = \sigma\frac<S data-lazy-src=

\frac<K data-lazy-src=

E_<eff data-lazy-src=

вещество См/м
серебро 62 500 000
медь 58 100 000
золото 45 500 000
алюминий 37 000 000
магний 22 700 000
иридий 21 100 000
молибден 18 500 000
вольфрам 18 200 000
цинк 16 900 000
никель 11 500 000
железо чистое 10 000 000
платина 9 350 000
олово 8 330 000
сталь литая 7 690 000
свинец 4 810 000
нейзильбер 3 030 000
константан 2 000 000
манганин 2 330 000
ртуть 1 040 000
нихром 893 000
графит 125 000
вода морская 3
земля влажная 10 −2
вода дистилл. 10 −4
мрамор 10 −8
стекло 10 −11
фарфор 10 −14
кварцевое стекло 10 −16
янтарь 10 −18

См. также

  • Адмиттанс
  • Зонная теория
  • Эффект Холла
  • Сверхпроводимость

Примечания

  1. Электропроводность (физич.) — статья из Большой советской энциклопедии
  2. В случае совпадения двух из трех собственных чисел \sigma_i, есть произвол в выборе такой системы координат (собственных осей тензора \sigma), а именно довольно очевидно, что можно произвольно повернуть ее относительно оси с отличающимся собственным числом, и выражение не изменится. Однако это не слишком меняет картину. В случае же совпадения всех трех собственных чисел мы имеем дело с изотропной проводимостью, и, как легко видеть, умножение на такой тензор сводится к умножению на скаляр.
  3. Для многих сред линейное приближение является достаточно хорошим или даже очень хорошим для достаточно широкого диапазона величин электрического поля, однако существуют среды, для которых это совсем не так уже при весьма малых E .
  4. Все точки провода движутся с одинаковым ускорением, поэтому