Меню

Электрическая цепь с переменным током

Электрическая цепь с переменным током

Вы будете перенаправлены на Автор24

В электротехнике изучаются принципы действия и устройства основных электротехнических приборов, которые используются в быту и промышленности. Чтобы любое электротехническое устройство работало, должна создаваться электрическая цепь. Основное задачей цепи является передача электрической энергии и обеспечение устройству необходимого режима работы.

Электрическая цепь: понятие и основные элементы

Электрическая цепь – это совокупность различных объектов и устройств, которые образуют путь для нормального протекания электрического тока. Электромагнитные процессы в цепях могут описываться при помощи понятий об электродвижущей силе, электрическом токе и электрическом напряжении.

Для того чтобы проводить расчеты и анализ, электрическую цепь можно представить в виде электрической схемы, которая состоит из условных обозначений ее элементов и способов их соединения.

Готовые работы на аналогичную тему

Все устройства и элементы, которые входят в состав электрической цепи, условно можно классифицировать на несколько групп:

  1. Источники электрического питания (энергии). Общее свойство всех источников питания – это преобразование любых видов энергии в электрическую. Источники, в которых осуществляется трансформация неэлектрической энергии в электрическую, называются первичными. Вторичными источниками являются те, в которых и на выходе, и на входе электрическая энергия. В качестве примера можно привести выпрямительные устройства.
  2. Потребители электроэнергии. Общее свойство всех потребителей электрической энергии – это трансформация электроэнергии в другие виды энергии. Пример – нагревательный прибор. Иногда потребители электроэнергии называют нагрузкой.
  3. Вспомогательные элементы электрической цепи. Сюда можно отнести коммуникативные устройства, соединительные провода, защитную аппаратуру, а также измерительные приборы, без которых электрическая цепь не функционирует.

Все элементы электрической цепи охватываются одним электромагнитным процессом.

Электрическая цепь с постоянным током

В электрической цепи постоянного тока электродвижущая сила, которая направлена внутрь источника электроэнергии от отрицательного полюса к положительному, возбуждает электрический ток такого же направления. Его можно определить по закону Ома для всей цепи:

  • $R$ — это сопротивление внешней цепи, которая состоит из соединительных проводов и приемника;
  • $ R_ $ — сопротивление внутренней цепи, которая состоит из источника электрической энергии.

Если все элементы электрической цепи и их сопротивления не зависят от направления и значения тока и электродвижущей силы, то такие элементы называют линейными.

Стоит отметить, что в одноконтурной постоянной электрической цепи, что имеет один источник электрической энергии, ток прямо пропорционален электродвижущей силе и обратно пропорционален сопротивлению цепи.

Из этого следует, что $E-R_ L = RI$, откуда:

$U = E – R_ l$ — это напряжение источника электроэнергии, которое направляется от положительного полюса к отрицательному.

При неизменной электродвижущей силе, напряжение зависит только от электрического тока, который определяет падение напряжения $ R_ l$ внутри источника электроэнергии, но только в том случае, если сопротивление внутренней электрической цепи $ R_ = const $.

Выражение $I = \frac $ — это закон Ома для участка электрической цепи, к зажимам которого приложено напряжение $U$, что совпадает с электрическим током $I $ этого же участка цепи.

Зависимость напряжения от электрического тока $U (I)$ при $E — const$ и $ R_ = const $ называется внешней (вольтамперной характеристикой линейного источника электроэнергии). По данной характеристике можно определить соответствующее напряжение для любого тока, а по формулам, что приведены ниже, — рассчитать мощность приемника электроэнергии:

Мощность источника электроэнергии:

КПД установки в цепи постоянного тока:

Точка Х вольтамперной характеристики источника электроэнергии соответствует режиму холостого хода при разомкнутой электрической цепи. В таком случае электрический ток $l_X = 0$, а напряжение $U_X = E$.

Точка К необходима для того, чтобы охарактеризовать режим короткого замыкания, который возникает при соединении зажимов источников электроэнергии. Внешнее сопротивление приравнивается нулю $R=0$. В этом случае формируется электрический ток короткого замыкания $I_K = \frac >$, который в несколько раз превышает номинальный ток $I_HOM$. Это случается по причине того, что внутреннее сопротивление источника электроэнергии $R_

Точка С соответствует согласованному режиму, при котором сопротивление внешней электрической цепи приравнивается сопротивлению внутренней цепи $ R_ $ источника электроэнергии. В таком режиме формируется электрический ток $I_c = \frac <2R_>$ внешней цепи и отвечает наибольшей мощности $R2_max = \frac <4R_>$. Коэффициент полезного действия в таком случае приравнивается нулю: $\eta c = 0$.

Учитывая все вышеизложенное, согласован режим, при котором:

Режимы электрических цепей в электроэнергетических установках значительно отличаются от согласованного режима и характеризуются токами, которые обуславливают сопротивление приемников $R$ и $ R_ $. В результате этого работа систем на высоком КПД.

Изучение явлений, которые протекают в электрических цепях, упрощается, если происходит их замена на схемы замещения. Эти схемы представлены в виде математических моделей с идеальными элементами. Данные схемы подробно отображают свойства электрической цепи и при соблюдении конкретных условий делают анализ электрического состояния цепей значительно проще.

Электрическая цепь с переменным током

Практически во всех случаях электрическая энергия производится, перераспределяется и потребляется в виде электрической энергии переменного тока.

Переменный ток нашел широкое применение в различных областях техники. Это все объясняется легкостью его получения, распределения, преобразования, а также простотой устройства двигателей и генераторов переменного тока, удобством их эксплуатации и надежностью работы.

Переменный ток меняет свое направление и значение определенное количество раз в секунду. Электроны при переменном токе движутся сначала в одном направлении вдоль провода, после чего останавливаются на мгновение и движутся в обратную сторону. В проводе электроны совершают колебательные движения. Из-за своей малой скорости ($V_ <эл>= 10^ <-4>м/с = 0,1 мм/с$) при таких колебаниях электроны успевают сделать лишь небольшие передвижения вдоль провода.

Чаще всего встречается синусоидальный переменный ток: изменение электрических величин (силы тока, электродвижущей силы, напряжения) показывают со временем плавную кривую линию, что называется синусоидой.

Электрические цепи, в которых направление электродвижущей силы, тока и напряжения периодически изменяются по синусоидальному закону, получили название «цепи синусоидального тока». Иногда их называют цепями переменного тока.

Для переменного тока выбирается синусоидальная форма, поскольку она обеспечивает экономное производство, распределение, использование и передачу электрической энергии. Именно переменная форма электрических величин остается неизменной во всех участках цепи. Иными словами, все емкостные и индуктивные элементы, которые входят в состав электрической цепи, не меняют синусоидальной формы напряжения и тока.

Электрические цепи с переменным током, по сравнению с цепями постоянного тока, имеют множество особенностей, которые определяются:

  • в первую очередь тем, что в состав электрических цепей переменного тока входят новые элементы: конденсаторы, трансформаторы, индуктивные катушки;
  • тем, что переменный ток и напряжение в данных элементах порождают переменные магнитные и электрические поля, которые приводят к формированию явления самоиндукции, токов смещения и взаимной индукции.

Все вышеперечисленные особенности оказывают ощутимое воздействие на процессы, протекающие в электрической цепи. Анализ процессов в таких цепях значительно усложняется. Большое значение для цепи переменного тока играет частота f. От ее значения зависит влияние индуктивностей и емкостей на процессы в электрической цепи.

Особенности цепей переменного тока обуславливают ряд специфических и новых явлений:

  • явление резонанса;
  • сдвиг фаз;
  • возникновение реактивных мощностей.

Источник

Цепи переменного тока. Определение и основные характеристики.

Цепи переменного тока

Приветствую всех на нашем сайте в рубрике “Основы электроники”!

В предыдущей статье мы обсудили понятия тока, напряжения и сопротивления, но все наши примеры были связаны только с постоянным током, поэтому сегодня мы будем разбираться с переменным ? Итак, переходим от слов к делу!

Давайте для начала выясним какова же область применения цепей переменного тока. А область довольно-таки обширна! Смотрите сами – все бытовые электронные приборы, компьютеры, телевизоры и т. д. являются потребителями переменного тока, соответственно, все розетки в нашем доме работают именно с переменным током.

Почему же для данных целей не используется постоянный ток? На этот вопрос можно дать сразу несколько ответов. Во-первых, гораздо проще преобразовать напряжение переменного тока одной величины в напряжение другой величины, чем произвести аналогичные “махинации” с постоянным током. Данные преобразования осуществляются при помощи трансформаторов, о которых мы обязательно поговорим в рамках нашего курса.

Зачем вообще нужно изменять напряжение переменного тока? С этим тоже все просто и логично. Давайте для примера рассмотрим ситуацию передачи сигнала с электростанции в отдельно взятый дом.

Распространение переменного тока

Как видите, с электростанции “выходит” высоковольтное переменное напряжение, затем оно преобразуется в низковольтное (к примеру, 220В), а затем уже по низковольтным линиям передачи достигает своей цели – а именно потребителей. Возникает вопрос – к чему такие сложности? Что же, давайте разберемся…

Задачей электростанции является генерировать и передавать сигнал большой(!) мощности (ведь потребителей много). Поскольку величина мощности прямо пропорциональна и значению тока и значению напряжения, то для достижения необходимой мощности нужно, соответственно, либо увеличивать ток, либо напряжение сигнала. Увеличивать значение тока, протекающего по проводам довольно проблематично, ведь чем больше ток, тем больше должна быть площадь поперечного сечения провода. Это связано с тем, что чем меньше сечение проводника, тем больше его сопротивление (вспоминаем формулу из статьи про сопротивление). Чем больше сопротивление, тем больше будет нагреваться провод и, соответственно, рано или поздно он прогорит.

Таким образом, использование токов огромной величины нецелесообразно, да и экономически невыгодно (нужны “толстые” провода). Поэтому мы логически приходим к выводу, что абсолютно необходимо передавать сигнал с большим значением напряжения. А поскольку в домах у нас требуются низковольтные цепи переменного тока, то сразу же становится понятно, что преобразование напряжения просто неизбежно ? А из этого и вытекает преимущество переменного тока над постоянным (именно для данных целей), поскольку как мы уже упомянули – преобразовывать напряжение переменного тока на порядок легче, чем постоянного.

Ну и еще одно важное преимущество переменного тока – его просто проще получать. И раз уж мы вышли на эту тему, то давайте как раз-таки и рассмотрим пример генератора переменного тока…

Генератор переменного тока.

Итак, генератор – это электротехническое устройство, задачей которого является преобразование механической энергии в энергию переменного тока. Давайте рассмотрим пример:

Генератор

На рисунке мы видим классический пример генератора переменного тока. Давайте разбираться, как же он работает и откуда тут появляется ток!

Но для начала пару слов об основных узлах. В состав генератора входит постоянный магнит (индуктор), создающий магнитное поле. Также может использоваться электромагнит. Вращающаяся рамка носит название якоря. В данном случае якорь генератора имеет только одну обмотку/рамку. Именно эта обмотка и является цепью переменного тока, то есть с нее и снимается переменный ток.

Переходим к принципу работы генератора переменного тока.

Магнит создает поле, вектор индукции которого B изображен на рисунке. Проводящая рамка площадью S равномерно вращается вокруг своей оси с угловой скоростью w. Поскольку рамка вращается, угол между нормалью к плоскости рамки и магнитным полем постоянно меняется. Запишем формулу для его расчета:

Здесь \alpha_0 – это угол в начальный момент времени (t = 0). Примем его равным 0, таким образом:

Вспоминаем курс физики и записываем выражение для магнитного потока, проходящего через рамку:

Величина магнитного потока, как и угол \alpha зависит от времени. Согласно закону Фарадея при вращении проводника в магнитном поле в нем (в проводнике) возникает ЭДС индукции, которую можно вычислить по следующей формуле:

Эта ЭДС и используется для создания тока в цепи (возникает разность потенциалов и, соответственно, начинает течь ток). Как уже видно из формулы – зависимость тока от времени будет иметь синусоидальный характер:

Переменный ток

Именно такой сигнал (синусоидальный) и используется во всех бытовых цепях переменного тока. Давайте поподробнее остановимся на основных параметрах, а заодно рассмотрим основные формулы и зависимости.

Основные параметры синусоидального сигнала.

Сигнал

На этом рисунке изображено два сигнала (красный и синий ? ). Отличаются они только одним параметром – а именно начальной фазой. Начальная фаза – это фаза сигнала в начальный момент времени, то есть при t = 0. При обсуждении генератора мы приняли величину \alpha_0 равной нулю, так вот это и есть начальная фаза. Для данных графиков уравнения выглядят следующим образом:

Синий график: i(t) = I_msin(wt)

Красный график: i(t) = I_msin(wt + \beta)

Для второй формулы (wt + \beta) это фаза переменного тока, а \beta – это начальная фаза. Часто для упрощения расчетов принимают начальную фазу равной нулю.

Значение i(t) в любой момент времени называют мгновенным значением переменного тока. Вообще все эти термины справедливы для любых гармонических сигналов, но раз уж мы обсуждаем переменный ток, то будем придерживаться этой терминологии ? Максимальное значение функции sin(x) равно 1, соответственно, максимальная величина тока в нашем случае будет равна I_m – амплитудному значению.

Следующий параметр сигнала – циклическая частота переменного тока w – она, в свою очередь, определяется следующим образом:

Где f – частота переменного тока. Для привычных нам сетей 220 В частота равна 50 Гц (это значит, что 50 периодов сигнала укладываются в 1 секунду). А период сигнала равен:

Среднее значение тока за период можно вычислить следующим образом:

Эта формула представляет собой ни что иное как суммирование всех мгновенных значений переменного тока. А поскольку среднее значение синуса за период равно 0:

На этом мы на сегодня и заканчиваем, надеюсь, что статья получилась понятной и окажется полезной. В скором времени мы продолжим изучать электронику в рамках нашего нового курса, так что следите за обновлениями и заходите на наш сайт!

Источник

Электрические цепи переменного тока

Переменный ток получил гораздо большее распространение в промышленности и в быту, чем постоянный, так как упрощается конструкция электродвигателей, а синхронные генераторы могут быть выполнены на значительно большие мощности и более высокие напряжения, чем генераторы постоянного тока. Переменный ток позволяет легко изменять величину напряжения с помощью трансформаторов, что необходимо при передаче электроэнергии на большие расстояния.

Электрический ток, возникающий под действием э. д. с, которая изменяется по синусоидальному закону, называют переменным. По существу, переменный ток — это вынужденные колебания тока в электрических цепях.

Амплитудой переменного тока называется наибольшее значение, положительное или отрицательное, принимаемое переменным током.

Периодом называется время, в течение которого происходит полное колебание тока в проводнике.

Частота — величина, обратная периоду.

Фазой называется угол или , стоящий под знаком синуса. Фаза характеризует состояние переменного тока с течением времени. При t=0 фаза называется начальной.

Периодический режим: . К такому режиму может быть отнесен и синусоидальный:

— амплитуда;

— начальная фаза;

— угловая скорость вращения ротора генератора.

При f=50Гц T= 1/f=0,02 с, 314рад/с.

График синусоидальной функции называется волновой диаграммой.

Расчет цепей переменного тока с использованием мгновенных значений тока, напряжения и ЭДС требует громоздкой вычислительной работы. Поэтому изменяющиеся непрерывно во времени токи, напряжения и ЭДС заменяют эквивалентными во времени величинами.

При расчете электрических цепей синусоидальную функцию выражают по формуле Эйлера через экспоненциальные функции:

— поворотный множитель;

— комплексная амплитуда напряжения;

— сопряженная комплексная амплитуда напряжения.

Таким образом, синусоидальное напряжение можно представить на комплексной плоскости вращающимся вектором. Тогда амплитудное значение напряжения будет представлять собой модуль или длину вектора напряжения.

Вектор напряжения на комплексной плоскости

Так как в цепи с синусоидальным напряжением ток тоже будет подчиняться этому закону, то аналогично можно записать

— комплексная амплитуда тока; *

— сопряженная комплексная амплитуда тока.

Разделив напряжение на ток, получим закон Ома в комплексном виде:

При напряжение на сопротивлении согласно закону Ома . Таким образом, следует отметить, что на активном сопротивлении напряжение и ток совпадают по фазе и (см. рисунок).

Кривые напряжения и тока в активном сопротивлении

Величину переменного напряжения или тока можно оценить значением амплитуды или средним значением за полупериод или действующим значением. При изменении напряжения или тока по закону синуса среднее значение напряжения определяется:

При большой частоте вращения ротора генератора, т. е. при большой частоте колебаний э. д. с. и силы тока, измерять их амплитуды на практике крайне неудобно. По этой причине ввели величины, названные действующими значениями э. д. с, силы тока и напряжения.

Действующим значением силы переменного тока называют силу такого постоянного тока, при прохождении которого по той же цепи и за то же время выделяется такое же количество теплоты, как и при прохождении переменного тока.

При синусоидальном законе действующие значения тока и напряжения:

Приборы электромагнитной системы, применяемые для измерений напряжений и токов на переменном токе, регистрируют действующие значения. Соответственно градуируются и шкалы этих приборов.

Ток, протекающий через индуктивность L (рис. 7), меняется по закону синуса /’ = Im sin(co/ + у;).

Кривые напряжения и тока в индуктивном сопротивлении

Напряжение на индуктивности определяется выражением

-индуктивное сопротивленияе

Индуктивное сопротивление выражают в омах, оно играет роль сопротивления в цепи переменного тока с катушкой индуктивности.

В идеальной индуктивности ток отстает от напряжения на 90°.

Если напряжение на емкости меняется по закону синуса , то

-емкостное сопротивление.

Емкостное сопротивление выражается в омах, оно играет роль сопротивления в цепи переменного тока с конденсатором.

Кривые напряжения и тока в емкостном сопротивлении

В идеальной емкости ток опережает напряжение на 90°

Режим — состояние электрической цепи переменного тока описывается дифференциальными уравнениями, представляющими собой уравнения с постоянными коэффициентами и правой частью, например:

Из курса высшей математики известно, что общее решение такого уравнения может быть найдено методом наложения принужденного и свободного режимов:

— ток принужденного режима при di/dt=0

— ток свободного режима.

Свободные процессы исследуются с целью определения устойчивости системы. В устойчивой системе процессы должны затухать. Принужденный и свободный режимы в сумме определяют процессы, которые называются переходными, т.е. осуществляется переход от одного установившегося режима к другому.

При установившемся режиме ток и напряжение сохраняют в течение длительного времени амплитудные значения.

В цепях постоянного тока токи и напряжения остаются неизменными, а в цепях переменного тока остаются неизменными кривые изменения токов и напряжений.

Мощность цепи переменного тока

В периодическом синусоидальном режиме

Используя известное тригонометрическое преобразование

и обозначив , получим

Среднее за период значение гармонической функции удвоенной частоты равно нулю.

Измерение мгновенного значения мощности переменного тока затруднено из-за сравнительно большой частоты колебаний (v = 50 Гц). Поэтому на практике принято пользоваться средней мощностью тока. Средняя мощность — это отношение энергии, потребляемой за один период, к периоду:

— энергетическое значение коэффициента мощности,

Потребляемая на участке цепи с резистором средняя мощность получила название активной мощности. Она необратимо преобразуется в джоулеву теплоту и другие виды энергии. Мощность, потребляемую на участках цепи с емкостным и индуктивным сопротивлениями, называют реактивной мощностью.

При передаче электрической энергии по цепи переменного тока ее необратимые преобразования происходят только на тех участках цепи, которые содержат резисторы. Такие участки цепи называют активной нагрузкой. На активной нагрузке электроэнергия превращается в теплоту или механическую работу.

Участок цепи с индуктивностью или емкостью называют реактивной нагрузкой. На участках цепи, которые состоят из чистых емкостных или индуктивных сопротивлений, электроэнергия не потребляется. В цепи с реактивными нагрузками происходит только перекачка энергии от генератора к нагрузке и обратно с неизбежными потерями в подводящих проводах.

При заданных Р и U ток является функцией cosj. Потери мощности на сопротивлении

В цепи с резистором j=0.

Коэффициент мощности cosj показывает, какая часть полной мощности, вырабатываемой генератором и передаваемой нагрузке, необратимо используется нагрузкой. Он играет важную роль в электротехнике. В самом деле, если в цепи имеется значительный сдвиг по фазе между колебаниями тока и э. д. с, то коэффициент мощности мал и нагрузка потребляет от генератора малую активную мощность. Вместе с тем генератор должен вырабатывать полную мощность S. Эту же мощность должен отдавать генератору первичный двигатель. Таким образом, при низком коэффициенте мощности нагрузка потребляет лишь часть энергии, которую вырабатывает генератор. Оставшаяся часть энергии перекачивается периодически от генератора к потребителю и обратно и рассеивается в линиях электропередачи.

Максимально благоприятные условия передачи электроэнергии создаются в цепи, работающей в режиме резонанса. В самом деле, при приближении к резонансу амплитуда силы тока оказывается максимальной и коэффициент мощности стремится к единице. В этом случае активная мощность приближается к полной мощности, т. е. достигает максимума.

Повышение к. м. является важной народнохозяйственной задачей, от решения которой зависит эффективность использования вырабатываемой электроэнергии.

Уменьшение к. м. в промышленных цепях происходит в основном за счет содержащихся в них трансформаторов и асинхронных электродвигателей, имеющих значительные индуктивные сопротивления. Поэтому повысить к. м. при таких нагрузках можно путем подключения параллельно основной цепи компенсирующих конденсаторов, позволяющих приблизиться к режиму резонанса токов.

С целью повышения к. м. и экономии электроэнергии не следует допускать холостого хода (т. е. работы без нагрузки) трансформаторов и асинхронных электродвигателей, ибо в этом случае они представляют собой чисто индуктивные сопротивления и вызывают дополнительные потери мощности.

Коэффициент мощности (к. м.) ни в коем случае нельзя путать с коэффициентом полезного действия (к. п. д.). Так, например, при определенном соотношении емкости и индуктивности коэффициент мощности в данной цепи может оказаться равным единице. Коэффициент же полезного действия цепи всегда меньше единицы.

Мощность цепи переменного тока

Мощность в активном сопротивлении

Мгновенное значение мощности для цепи с резистором:

Из рисунка видно, что потребляемая резистором мгновенная мощность остается все время положительной, но пульсирует с удвоенной по отношению к силе тока и э. д. с. частотой.

Действующее значение мощности:

Активная мощность в цепи с идеальной катушкой индуктивности и конденсатором равна 0. Реактивная мощность определяется выражением:

Аналогично можно проделать для цепи с идеальным конденсатором:

В произвольной цепи переменного тока потребляемая одновременно активной и реактивной нагрузками суммарная мощность

Но так как , следовательно, . Мы приходим к выводу, что суммарная средняя мощность, потребляемая полной цепью переменного тока, равна активной мощности.

где S — полная мощность, вырабатываемая генератором переменного тока, ВА;

a — сдвиг по фазе между колебаниями э. д. с. и силы тока.

Источник



Все, что нужно знать об электрических цепях переменного тока: виды, структура и расчеты

Фото 1

Хотя постоянный ток качественнее переменного, в электросетях в основном применяется второй. Причины — удешевление двигателей (генераторов), мизерные потери при транспортировке электричества на большие расстояния и возможность преобразовывать ток трансформированием.

Далее рассмотрим, какими бывают электрические цепи переменного тока и из чего они состоят.

Электрические цепи переменного тока

Переменный ток, в отличие от постоянного, с определенной периодичностью меняет направление и величину. Генерируется он путем вращения проволочного витка в магнитном поле или, наоборот, магнитного поля при неподвижном витке.

Наводимая ЭДС зависит от синуса угла, на который повернут ротор генератора. Потому все переменные электрические величины являются синусоидальными. Существует два вида цепей переменного тока – одно- и трехфазные.

Фото 2

Параметры переменного тока:

  1. амплитуда: максимальное отклонение от нуля. Оно достигается при положении плоскости витка перпендикулярно силовым линиям поля. В момент времени, когда плоскость витка и силовые линии становятся параллельными, ЭДС падает до нуля, затем меняет знак;
  2. частота: число полных циклов за секунду (в основном используется ток частотой в 50 Гц);
  3. мгновенное значение: величина параметра в данный момент времени;
  4. действующее значение (см. ниже).

Однофазные

В однофазной цепи генератор имеет одну обмотка для индукции ЭДС и к ней подключен один проводник. Источников тока может быть и несколько, но они должны работать в одной фазе и на одной частоте.

Трехфазные

Фото 3

В статоре генератора 3-фазной цепи имеется 3 обмотки для индукции, сдвинутые друг относительно друга на угол в 120 n градусов, где n — число пар полюсов. Соответственно, наводимые в каждой обмотке ЭДС отличаются по фазе на угол в 120 градусов (электрический угол).

При отдельном подключении каждой обмотки для передачи энергии требуется 6 проводов. Систему называют несвязной и сегодня она не применяется ввиду повышенных затрат материалов.

Экономически более целесообразна связанная система, когда обмотки соединены одним из двух способов:

  1. «звездой». Обмотки одной стороной замкнуты в одной точке. Это дает возможность применить один нулевой провод, общий для всех фаз, то есть система получается 4-проводной. А если токи в фазах равны (симметричная нагрузка), необходимость в использовании нулевого провода отпадает: токи гасят друг друга (их векторная сумма равна нулю). В этом случае применяется 3-проводная система;
  2. «треугольником». Обмотки образуют замкнутый контур: каждая своим концом подключается к началу следующей. В каждой фазе формируется линейное напряжение, равное фазному. Но величина фазного тока окажется в 1,72 раза ниже линейного.

Трехфазная система электроснабжения превосходит однофазную в следующем:

Фото 4

  1. требуется меньше материалов для изготовления силовых кабелей;
  2. для одной установки доступно два напряжения: фазное (фаза – нейтраль) и линейное (фаза – фаза). То есть при изменении схемы подключения нагрузки со «звезды» на «треугольник», получают два уровня мощности;
  3. есть возможность получать вращающееся магнитное поле, чем удешевляется конструкция электродвигателей и других устройств. Для этого в статоре двигателя размещают равноудаленно три обмотки, подключенные к разным фазам;
  4. система уравновешена. К примеру, 3-фазные люминесцентные светильники почти не мерцают, в отличие от 1-фазных. В таком светильнике имеется три лампы или группы ламп, подключенных к разным фазам. Когда светимость одной лампы уменьшается, соседняя разгорается. Происходит взаимокомпенсация.

Структура

Электрическая цепь — совокупность устройств и элементов, имеющая целью доставить ток потребителю и преобразовать его в другой вид энергии: тепло, свет или механическую работу.

Фото 5

В цепи различают три части:

  1. источник питания;
  2. транслирующая часть: провода, выключатели, трансформаторы, стабилизаторы и пр. Все то, что используется для передачи, трансформации электрической энергии и поддержания ее качества на должном уровне;
  3. потребители: лампы, электродвигатели, нагреватели и пр.

Источник питания — генератор, аккумулятор, солнечную батарею — называют внутренней частью цепи, остальные компоненты — внешней. Также источник называют активным элементом, прочие — пассивными. Электрическая цепь функционирует только в замкнутом виде, то есть в непрерывном. При размыкании сила тока в ней падает до нуля, хотя участок со стороны генератора или батареи остается под напряжением.

По числу выводов компоненты цепи делятся на два вида:

  1. двухполюсные: имеют одну пару выводов. Пример — диод, резистор;
  2. многополюсные: имеют более двух выводов. Пример — трансформатор (4 вывода).

Процессы в электрической цепи описываются законами Ома и Кирхгофа.

Компоненты в ней соединяются тремя способами:

  • последовательно;
  • параллельно;
  • комбинированным способом.

Применяют такие термины:

  1. ветвь. Участок из последовательно соединенных элементов в параллельной или комбинированной цепи. Законы электротехники гласят: сила тока в пределах ветви одинакова, независимо от величины сопротивления составляющих ее компонентов, а общее сопротивление ветви равно сумме сопротивлений всех ее компонентов. В цепи только с последовательным соединением компонентов, ветвей не выделяют, ее так и называют — неразветвленная цепь;
  2. узел. Место, где цепь разветвляется. Принято считать, что сумма токов, сходящихся в узле, равна сумме токов, исходящих из него. Падение напряжения для параллельных ветвей между точками разветвления и схождения — одинаково;
  3. контур. Совокупность ветвей, представляющая собой замкнутый путь для тока.

По функциональности отдельные части в структуре электрической цепи делятся на такие виды:

Фото 6

  1. силовая. Включает в себя элементы, генерирующие, проводящие, преобразующие и потребляющие электроэнергию;
  2. вспомогательная. Различные дополнительные устройства, не относящиеся к силовой части. Например, установки компенсации реактивной мощности, предохранители;
  3. измерительная. Относящиеся к этой части приборы позволяют отследить параметры сети и подключенных к ней устройств;
  4. управляющая. Оборудование для регулировки параметров устройств либо их включения/отключения.;
  5. сигнализирующая. Сообщает путем включения сигнальных устройств об изменениях в параметрах сети.

По сложности электрические цепи делят на:

  • простейшие: источник, подключенный к потребителю;
  • простые: содержат один контур;
  • сложные: насчитывают несколько контуров.

В сложных цепях выделяют:

  • многоконтурные;
  • многоузловые;
  • плоскостные;
  • объемные.

Расчет цепи

Основная цель расчета — определение на отдельных участках цепи:

Фото 7

  • напряжения;
  • силы тока;
  • мощности и угла сдвига фаз.

В простых случаях, когда в цепи присутствует только резистивная нагрузка, неудобный для расчетов переменный ток заменяют так называемым действующим значением. Это постоянный ток, эквивалентный данному переменному, то есть выделяющий то же количество тепла.

Для синусоидальных переменных тока и напряжения, справедливы выражения:

  • I = Imax / корень из 2 = Imax / 1.41;
  • U = Umax / корень из 2 = Umax / 1.41;
  • где I и U — действующие значения, соответственно, тока и напряжения;
  • Imax и Umax — амплитуды тока и напряжения, то есть их максимальные отклонения от нуля.

Стандартное напряжение в бытовой электросети 210-230 В — это действующее значение. Реальное значение колеблется в пределах от -296 до 296 В (210 В) или от -324 до 324 В (230 В).

Аналогично, когда говорят, что прибор мощностью 2,2 кВт потребляет ток в 10 А, подразумевают действующее значение, тогда как реальная его величина колеблется в пределах от -14 до 14 А.

Фото 8

График синусоидального переменного тока

Задача усложняется при наличии в комплексе таких элементов:

  • катушки индуктивности: возникают ЭДС само- и взаимоиндукции;
  • конденсаторы: появляются токи – зарядные и разрядные.

Под влиянием этих процессов напряжение и ток сдвигаются по фазе друг относительно друга, разница составляет 90 градусов, при этом в системах:

  • с индуктивностью – U опережает I;
  • с конденсаторами – напряжение отстает от тока.

В подобных цепях действуют те же законы, что и в цепях постоянного тока, но заменить переменные напряжения и ток на действующие значения нельзя, существует два пути:

  1. оперирование мгновенными значениями переменных величин;
  2. запись их в векторной (комплексной) форме.

В первом варианте приходится иметь дело с тригонометрическими уравнениями, поскольку мгновенные значения тока и других параметров выражаются через функцию «sin(ωt)», где ω — угловая частота вращения ротора генератора, t — время. Решение таких уравнений отличается сложностью, потому этот путь непопулярен. Векторными величинами оперировать проще.

Этот метод называют символическим. При составлении уравнений, векторы записывают в виде комплексных чисел, задаваясь условным положительным направлением для тока, напряжения и ЭДС.

В алгебраической форме комплексное число выглядит так A = a + jb, где:

  • А — действительная (вещественная) часть;
  • j — мнимая единица;
  • b — мнимая часть.

Букву, выражающую электрический параметр, в комплексной записи подчеркивают. Для проверки правильности расчета цепи составляют баланс активной и реактивной мощностей.

Видео по теме

О расчете электрической цепи переменного тока в видео:

Многие бытовые приборы, особенно электроника, чувствительны к качеству переменного тока, то есть к стабильности его параметров. Если источник стабильностью не обеспечивает, ситуацию спасает специальное устройство — стабилизатор. Обычные стабилизаторы корректируют только напряжение, а инверторные — даже частоту.

Источник

Читайте также:  Куда течет ток с севера