Меню

Для чего нужны конденсаторы в электродвигателе постоянного тока

Конденсаторы для запуска электродвигателя

Пусковой конденсатор позволяет организовать начальный момент вращения вала ротора электромотора. Подключение электрических двигателей в сеть напряжением 220 вольт требует кратковременного присоединения пусковой обмотки через подобную электрическую ёмкость.

Пусковые элементы CD-60

Устройство и предназначение конденсаторов

Этот элемент электрической схемы состоит из двух пластин (обкладок). Обкладки расположены по отношению друг к другу так, что между ними оставлен зазор. При включении конденсатора в цепь электрического тока на обкладках накапливаются заряды. Из-за физического зазора между пластинами устройство обладает маленькой проводимостью.

Внимание! Этот зазор бывает воздушным или заполнен диэлектриком. В качестве диэлектрика применяются: бумага, электролит, оксидные плёнки.

Главная особенность такого двухполюсника – способность накапливать энергию электрического поля и мгновенно отдавать её на нагрузку (заряд и разряд).

Устройство детали

Первым прототипом ёмкости стала Лейденская банка, созданная в 1745 году в городе Лейдене немцем фон Клейстом. Банку изнутри и снаружи выстилали медной фольгой. Так появилась идея создания обкладок.

Лейденские банки, соединённые параллельно

Графическое обозначение двухполюсника на схемах и чертежах – две вертикально расположенные черты (как обкладки) с зазором между ними.

Обозначение на схемах

Функциональные возможности

В цепях постоянного тока элемент некоторое время накапливает заряд на обкладках и не пропускает электроны через диэлектрик. Это значит, что в начальный момент постоянный ток проходит через деталь до окончания заряда. Такое же происходит и при разряде.

Важно! Ток, который периодически изменяется, элемент пропускает через себя. Такое возможно, потому что двухполюсник циклически перезаряжается при смене полярности электричества.

Характеристики

Напряжение, создаваемое на обкладках двухполюсника, равно разности потенциалов:

Зная напряжение и заряд, можно вычислить ёмкость (С). Это одна из основных характеристик двухполюсника:

где:

  • C – ёмкость, Ф (фарад);
  • q – заряд, накопленный двухполюсником, Кл (кулон);
  • U – напряжение, В.

Электроёмкость является физической величиной, которую определяют, разделив заряд пластины на разность потенциалов между пластинами. Единица измерений C – фарада (Ф).

К сведению. Ёмкость, равная 1 Ф, – большая величина, поэтому на практике её измеряют: в микрофарадах (мкФ), пикофарадах (пФ), нанофарадах (нФ).

Таблица измерения ёмкости

К остальным параметрам двухполюсника относятся:

  • плотность энергии;
  • номинальное напряжение;
  • полярность.

Когда масса корпуса детали значительно меньше, чем общая масса электролита и пластин, тогда достигается максимально высокая плотность энергии.

Номинальным называется такое напряжение, при котором элемент может работать длительное время, без нарушения (отклонения) рабочих характеристик.

Емкостные двухполюсники бывают:

  • неполярными;
  • полярными (электролитическими).

Неполярные детали при подключении не ориентированы на полярность выводов заряда источника питания. Особенность электролитических элементов связана с химической реакцией между диэлектриком и электролитом. У таких моделей есть анод (положительный вывод) и катод (отрицательный вывод).

Разновидности емкостных элементов

Емкостные двухполюсники различают по следующим видам:

  • по типу диэлектрика – вакуумный, газообразный, жидкий, твёрдый, электролит, оксидно-полупроводниковый;
  • по конструктивной особенности изменять C – постоянные, переменные, подстроечные;
  • по назначению – общие, специальные.

Пусковые конденсаторы относятся к двухполюсникам специального назначения.

Простые способы присоединения электромотора

Простейшее включение моторов – присоединение к трёхфазной сети. Электрообмотки мотора соединяются двумя способами:

  • звездой;
  • треугольником.

Порядок соединения указаны на крышке клеммника с обратной стороны.

Схема включения

Внимание! Соединение обмоток «треугольником» быстро выводит двигатель на максимальную мощность, но тогда величина пускового тока возрастает семикратно. Плавный пуск, при отсутствии пускового реостата, затруднён.

Соединение обмоток «звездой» позволяет устойчиво и длительно работать мотору при плавном запуске. Машина выдерживает кратковременные перегрузки и не перегревается. Мощность её несколько ниже, чем при альтернативном подключении.

Соединить в одну точку начала обмоток могут уже при изготовлении. На клеммник выводят только три их конца. Поэтому выводы просто подключают к фазам сети. Направление вращения выбирают, изменяя местами подключение выводов к двум соседним фазам.

Мотор, у которого выведены только три провода

Специфика схем с конденсаторами

Когда подбирают типы включения электромашин при помощи пусковых и рабочих двухполюсников к сети 220 вольт, то выделяют следующие:

  • включение в «треугольник»;
  • подсоединение в «звезду».

К сведению. Какие отличия между пусковыми и рабочими двухполюсниками? «Пусковыми» называются элементы, применяемые только для запуска, а «рабочими» – используемые в работе постоянно.

Схемы подсоединения к линии 380 В

В применении емкостных элементов, при подключении 3-х фазного мотора к сети 380 вольт, нет необходимости.

Включение мотора в трёхфазную сеть

Схемы включения в однофазную сеть

При монтаже однофазного мотора в однофазную линию его запуск осуществляют, используя дополнительную обмотку. Такой двигатель имеет три вывода:

  • от рабочей катушки;
  • от дополнительной;
  • общий вывод для обеих обмоток.

Когда отсутствует маркировка, катушки «прозваниваются» тестером для определения правильности подсоединения.

Схема для запуска однофазного двигателя

Тип сборки «Треугольник»

Для присоединения асинхронной трёхфазной машины в однофазную линию возможно применение соединения «треугольник». Пусковая емкость включается согласно схеме.

Включение мотора по соединению «треугольник»

Тип сборки «Звезда»

Аналогичный принцип сборки цепи запуска 3-х фазного двигателя, обмотки которого соединены «звездой». Когда есть возможность самостоятельно выполнить такое соединение обмоток, то его осуществляют на клеммнике.

Подключение «звездой»

Величина емкости: рабочей и пусковой

Удельную ёмкость этих элементов можно высчитать, используя онлайн-калькулятор в сети интернет. Расчёт делают, самостоятельно пользуясь формулами.

Для запускающего элемента

Известны две формулы для определения ёмкости пускового двухполюсника:

  • для схемы «звезда» – Cп = 2800*I/U;
  • для схемы «треугольник» – Cп = 4800*I/U.

Номинальный ток рассчитывают, пользуясь выражением:

Здесь:

  • P – мощность мотора;
  • U – напряжение сети;
  • η – КПД;
  • cosϕ – коэффициент мощности.

Для рабочего элемента

Подобрать рабочий конденсатор можно из расчёта:

Запущенный и устойчиво работающий двигатель нуждается в применении рабочей ёмкости для вращения под нагрузкой.

Упрощенный вариант расчета пускового элемента

Грубо подобрать C можно, учитывая, что на каждые 0,1 кВт должно приходиться 7 мкФ (Сп = 70*P). Когда двигатель не запускается, ёмкости мало, когда при работе перегревается – много.

Пусковой конденсатор

Если выбирать в качестве пускового элемента один из металлобумажных типов, то можно остановиться на таком, как – мбгч.

Это герметизированный и высоковольтный запускающий элемент. Его выпускают с величиной постоянной ёмкости до 10 мФ и рассчитанным на напряжение 250-1000 В. Применяют такой двухполюсник в сетях любого рода тока.

Двухполюсник МБГЧ

Какой тип использовать

Требования к конденсаторам для запуска электродвигателей простые:

  • величина ёмкости достаточная для запуска мотора;
  • номинальное напряжение подбирают на 10-15% выше, чем подключаемое;
  • двухполюсник обязан работать с приложенным видом тока.

Есть небольшие нюансы для электрических машин, различающихся по принципу работы.

Для работы с трехфазным электродвигателем

В этом случае деталь осуществляет сдвиг фазы у обмотки асинхронной машины, и ее ёмкость должна быть высокой. Создание пускового момента и дальнейшая работа под нагрузкой требуют более точного подбора этой характеристики элемента.

Включение с однофазным электродвигателем

Пусковые конденсаторы здесь применяются для присоединения дополнительной обмотки. Она предназначена для запуска мотора и может быть включена как постоянно, через двухполюсник, так и кратковременно без него.

Особенности выбора детали

Выбранные конденсаторы пусковые соответствуют подаваемому напряжению. Величина их ёмкости не должна позволять двигателю перегреваться во время работы и легко запускать его в момент включения. Особых сложностей с подбором элементов не возникает.

Использование электролитических конденсаторов

Пусковой конденсатор для начала работы трёхфазного двигателя от 220в обязан иметь большую ёмкость. Чтобы сдвинуть с места вал движка мощностью 3 киловатта, необходимо 2100 мкФ ёмкости. Для подбора такой величины С понадобится целая батарея неполярных компонентов. Электролитические двухполюсники (электролиты) обладают большей ёмкостью при меньших размерах. Но включение их в цепь переменного тока надолго недопустимо.

Осторожно. При длительном присоединении емкости электролит закипает, и элемент взрывается.

Схема подключения электролитического элемента для запуска двигателя

Рабочее напряжение

У конденсаторов для электродвигателей напряжение Uном должно быть выше Uпит. Если питающее напряжение 220 В, то элемент берут с Uн = 250-400 В.

Подключение электромотора своими руками

Как подобрать конденсатор для однофазного двигателя, уже понятно. Отбор конденсаторов для трехфазного мотора рассмотрен. Как же практически смонтировать схему для пуска двигателя, что для этого необходимо?

Схема состоит из следующих компонентов:

  • двигатель (до 3 квт);
  • конденсаторы: пусковой и рабочий, которые отличаются по ёмкости;
  • пусковая кнопка ПНВС на 220 В.

Зачем нужна пусковая кнопка? Для кратковременного подключения электролитического двухполюсника и начала вращения двигателя. Собирается цепь согласно схеме на картинке ниже. Все соединения производятся под болтовые зажимы. Оголённые участки проводов подлежат обязательной изоляции.

Практическая схема соединения

Применение запускающих и рабочих конденсаторов позволяет осуществить запуск двигателей в любой цепи. Емкости двухполюсников должно быть достаточно для начала вращения и устойчивой работы под нагрузкой. Детали предпочтительно использовать новые.

Видео

Источник

Назначение и подключение пусковых конденсаторов для электродвигателей

Для обеспечения надежной работы электродвигателя используются пусковые конденсаторы.

пусковые конденсаторы для электродвигателей

  • Назначение и преимущества ↓
  • Схемы подключения ↓
  • Выбор пускового конденсатора для электродвигателя ↓
  • Обзор моделей ↓
  • Советы ↓

Наибольшая нагрузка на электродвигатель действует на момент его старта. Именно в этой ситуации пусковой конденсатор начинает работать. Также отметим, что во многих ситуациях пуск проводится под нагрузку. В этом случае, нагрузка на обмотки и другие компоненты очень велика. Какая же конструкция позволяет снизить нагрузку?

Все конденсаторы, в том числе и пусковые, имеют следующие особенности:

  1. В качестве диэлектрика используется специальный материал. В рассматриваемом случае, часто используется оксидная пленка, которую наносят на один из электродов.
  2. Большая емкость при малых габаритных размерах – особенность полярных накопителей.
  3. Неполярные имеют большую стоимость и размеры, но они могут использоваться без учета полярности в цепи.

Подобная конструкция представляет собой сочетание 2 проводников, которые разделяет диэлектрик. Применение современных материалов позволяет значительно повысить показатель емкости и уменьшить его габаритные размеры, а также повысить его надежность. Многие при внушительных рабочих показателях имеют размеры не более 50 миллиметров.

Назначение и преимущества

пусковой конденсатор для электродвигателей

Используются конденсаторы рассматриваемого типа в системе подключения асинхронного двигателя. В данном случае, он работает только на момент пуска, до набора рабочей скорости.

Наличие подобного элемента в системе определяет следующее:

  1. Пусковая емкость позволяет приблизить состояние электрического поля к круговому.
  2. Проводится значительное повышение показателя магнитного потока.
  3. Повышается пусковой момент, значительно улучшается работа двигателя.
Читайте также:  Постоянный электрический ток определение физический смысл

Без наличия этого элемента в системе, срок службы двигателя значительно уменьшается. Это связано с тем, что сложный пуск приводит к определенным сложностям.

Преимущества сети, которая имеет подобный элемент, заключаются в следующем:

  1. Более простой пуск двигателя.
  2. Срок службы двигателя значительно больше.

Пусковой конденсатор работает на протяжении нескольких секунд на момент старта двигателя.

Схемы подключения

схема подключения электродвигателя с пусковым конденсатором

Большее распространение получила схема, которая имеет в сети пусковой конденсатор.

Данная схема имеет определенные нюансы:

  1. Пусковая обмоткаи конденсатор включаются на момент старта двигателя.
  2. Дополнительная обмотка работает небольшое время.
  3. Термореле включается в цепь для защиты от перегрева дополнительной обмотки.

При необходимости обеспечения высокого момента во время пуска, в цепь включается пусковой конденсатор, который подключается вместе с рабочим. Стоит отметить, что довольно часто его емкость определяется опытным путем для достижения наибольшего пускового момента. При этом, согласно проведенным измерениям, величина его емкости должна быть в 2-3 раза больше.

К основным моментам создания цепи питания электродвигателя, можно отнести следующее:

  1. От источника тока, 1 ветка идет на рабочий конденсатор. Он работает на протяжении всего времени, поэтому и получил подобное название.
  2. Перед ним есть разветвление, которое идет на выключатель. Кроме выключателя может использоваться и другой элемент, который проводит пуск двигателя.
  3. После выключателя устанавливается пусковой конденсатор. Он срабатывает в течение нескольких секунд, пока ротор не наберет обороты.
  4. Оба конденсатора идут к двигателю.

Подобным образом можно провести подключение однофазного электродвигателя.

Выбор пускового конденсатора для электродвигателя

пусковые конденсаторы для электродвигателей

Современный подход к данному вопросу предусматривает использование специальных калькуляторов в интернете, которые проводят быстрый и точный расчет.

Для проведения расчета следует знать и ввести нижеприведенные показатели:

  1. Тип соединения обмоток двигателя: треугольник или звезда. От типа соединения зависит также и емкость.
  2. Мощность двигателя является одним из определяющих факторов. Этот показатель измеряется в Ваттах.
  3. Напряжение сети учитывается при расчетах. Как правило, оно может быть 220 или 380 Вольт.
  4. Коэффициент мощности – постоянное значение, которое зачастую составляет 0,9. Однако, есть возможность изменить этот показатель при расчете.
  5. КПД электродвигателя также оказывает влияние на проводимые расчеты. Эту информацию, как и другую, можно узнать, изучив нанесенную информацию производителем. Если ее нет, следует ввести модель двигателя в интернете для поиска информации о том, какой КПД. Также, можно ввести приблизительное значение, которое свойственно для подобных моделей. Стоит помнить, что КПД может изменяться в зависимости от состояния электродвигателя.

Подобная информация вводится в соответствующие поля и проводится автоматический расчет. При этом, получаем емкость рабочего конденсата, а пусковой должен иметь показатель в 2,5 раза больше.

Провести подобный расчет можно самостоятельно.

Для этого можно воспользоваться следующими формулами:

  1. Для типа соединения обмоток «звезда», определение емкости проводится при использовании следующей формулы: Cр=2800*I/U. В случае соединения обмоток «треугольником», используется формула Cр=4800*I/U. Как видно из вышеприведенной информации, тип соединения является определяющим фактором.
  2. Вышеприведенные формулы определяют необходимость расчета величины тока, который проходит в системе. Для этого используется формула: I=P/1,73Uηcosφ. Для расчета понадобятся показатели работы двигателя.
  3. После вычисления тока можно найти показатель емкости рабочего конденсатора.
  4. Пусковой, как ранее было отмечено, в 2 или 3 раза должен превосходить по показателю емкости рабочий.

пусковые конденсаторы

При выборе, стоит также учесть нижеприведенные нюансы:

  1. Интервал рабочей температуры.
  2. Возможное отклонение от расчетной емкости.
  3. Сопротивление изоляции.
  4. Тангенс угла потерь.

Обычно на вышеуказанные параметры не обращают особого внимания. Однако их можно учесть для создания идеальной системы питания электродвигателя.

Габаритные размеры также могут стать определяющим фактором. При этом, можно выделить следующую зависимость:

  1. Увеличение емкости приводит к увеличению диаметрального размера и расстояния выхода.
  2. Наиболее распространенный максимальный диаметр 50 миллиметров при емкости 400 мкФ. При этом, высота составляет 100 миллиметров.

Обзор моделей

Существует несколько популярных моделей, которые можно встретить в продаже.

Стоит отметить, что эти модели отличаются не по емкости, а по виду конструкции:

  1. Металлизированные полипропиленовые варианты исполнения марки СВВ-60. Стоимость подобного варианта исполнения около 300 рублей.
  2. Пленочные марки НТС стоят несколько дешевле. При одинаковой емкости, стоимость составляет около 200 рублей.
  3. Э92 – продукция отечественных производителей. Их стоимость небольшая – порядком 120-150 рублей при той же емкости.

Существуют и другие модели, зачастую они отличаются типом используемого диэлектрика и видом изоляционного материала.

Источник

Конденсатор для пуска электродвигателя

Если требуется присоединить трехфазный электродвигатель к обычной электросети, то потребуется создать электросхему для сдвига фаз. Основой такой схемы может служить конденсатор. Применяется он и для однофазного двигателя с целью облегчения его пуска.

Конденсатор для пуска электродвигателя

Что такое конденсатор

Это устройство для накопления электрического заряда. Он состоит из пары проводящих пластин, находящихся на малом отстоянии друг от друга и разделенных слоем изолирующего материала.

Широко распространены следующие виды накопителей электрического заряда:

  • Полярные. Работают в цепях с постоянным напряжением, подключаются в соответствии с указанной на них полярностью.
  • Неполярные. Работают в цепях с переменным напряжение, подключать можно как угодно
  • Электролитические. Пластины представляют собой тонкие оксидные пленки на листе фольги.

Неполярный конденсатор

Электролитические лучше других подходят на роль конденсатора для пуска электродвигателя.

Описание разновидностей конденсаторов

Различным типам электродвигателей соответствуют подходящие им по своим характеристикам накопители.

Так, для низкочастотных высоковольтных (50 герц, 220-600 вольт) двигателей хорошо подходит электролитический конденсатор. Такие устройства обладают высокой емкостью, доходящей до 100 тысяч микрофарад. Нужно внимательно следить за соблюдением полярности, в противном случае из-за перегрева пластин возможно возгорание.

Неполярные накопители не имеют таких ограничений, но стоят они с несколько раз дороже.

Различные виды конденсаторов

Различные виды конденсаторов

Кроме перечисленных выше, производятся также вакуумные, газовые, жидкостные устройства, но как пусковой или рабочий конденсатор в схеме подключения электромотора, они не применяются.

Выбор емкости

С целью максимизации эффективности электродвигателя нужно рассчитать ряд параметров электроцепи, и прежде всего емкость.

Для рабочего конденсатора

Существуют сложные и точные методы расчета, однако в домашних условиях вполне достаточно оценить параметр по приближенной формуле.

На каждые 100 ватт электрической мощности трехфазного электродвигателя должно приходиться 7 микрофарад.

Недопустимо также подавать на фазовую статорную обмотку напряжение, превышающее паспортное.

Для пускового конденсатора

Если электродвигатель должен запускаться при наличии высокой нагрузки на приводном валу, то рабочий конденсатор не справится, и на время запуска потребуется подключать пусковой. После достижения рабочих оборотов, что происходит в среднем за 2-3 секунды, он отключается вручную или устройством автоматики. Доступны специальные кнопки включения электрооборудования, автоматически размыкающие одну из цепей через заданное время задержки.

Недопустимо оставлять пусковой накопитель подключенным в рабочем режиме. Фазовый перекос токов может привести к перегреву и возгоранию двигателя. Определяя емкость пускового прибора, следует принимать ее в 2-3 раза выше, чем у рабочего. При этом при запуске крутящий момент электродвигателя достигает максимального значения, а после преодоления инерции механизма и набора оборотов он снижается до номинального.

Для набора требуемой емкости конденсаторы для запуска электродвигателя подключают в параллель. Емкость при этом суммируется.

Простые способы подключения электродвигателя

Самый простой способ подключения трехфазного электродвигателя к бытовой электросети – применение частотного преобразователя. Потери мощности будут минимальны, но стоит такое устройство зачастую дороже самого двигателя.

Частотный преобразователь станет экономически эффективным лишь при большом объеме использования оборудования.

При другом способе для преобразования питающего напряжения используется обмотка самого асинхронного электродвигателя. Схема получится громоздкая и массивная. Конденсатор для запуска электродвигателя подключают по одной из двух популярных схем

  • треугольник;
  • звезда.

Подключение двигателя по схемам

Подключение двигателя по схемам «звезда» и «треугольник»

При реализации подключения этими способами важно свести к минимуму потери по мощности.

Схема подключения «треугольник»

Схема достаточно простая, для облегчения понимания обозначим контакты мотора символами A — ноль, B — рабочий и C — фазовый

Сетевой шнур подсоединяется коричневым проводником к контакту A, туда же следует подсоединить один из выводов конденсатора. К контакту И подсоединяется второй вывод прибора, а синий проводник сетевого шнура — к контакту С.

В случае небольшой мощности электромотора, не превышающей 1,5 киловатта, допустимо подключать только один конденсатор, пусковой при этом не нужен.

Если же мощность выше и нагрузка на валу значительная, то используют два параллельно соединенных прибора.

Схема подключения «звезда»

В случае если на клеммнике электродвигателя 6 выводов — следует их прозвонить по отдельности и определить, какие выводы связаны друг с другом. В паспорте мотора нужно найти назначение выводов. После этого схема переподключается, формируя привычный «треугольник».

С этой целью снимаются перемычки и контактам присваивают условные обозначения от A до F. Далее последовательно соединяются контакты: A и D, B и E, C и F.

Теперь контакты D, E и F станут соответственно нулевым, рабочим и фазовым проводом. Конденсатор присоединяют к ним точно так же, как в предыдущем случае.

При первом включении нужно внимательно следит за тем, чтобы обмотки не перегревались. В этом случае следует немедленно отключить устройство и определить причину перегрева.

Рабочее напряжение

После емкости напряжение является важнейшим параметром. Если взять слишком большой запас по напряжению — сильно вырастут габариты, вес и цена всего устройства. Еще хуже – взять устройства, которым не хватает рабочего напряжения. Такое использование приведет к их быстрому износу, выходу из строя, пробою. При этом возможно возгорание или даже взрыв.

Оптимальный запас по напряжению — 15-20%.

Важно! Для конденсаторов с диэлектриком из бумаги в цепях с переменным напряжением номинальное напряжение, указанное для постоянного тока, нужно поделить на 3.

Если указано 600 вольт, то в цепях переменного тока безопасно применять такие конденсаторы можно до 300 вольт.

Использование электролитических конденсаторов

Конденсаторы с диэлектриком из бумаги отличаются малой удельной емкостью и значительными габаритами. Для двигателя даже не самой большой мощности они будут занимать много места. Теоретически их можно заменить электролитическими, обладающими в несколько раз более высокой удельной емкостью.

Читайте также:  Дипломные работа источник тока

Разновидности устройства электролитического конденсатора

Разновидности устройства электролитического конденсатора

Для этого электрическую схему придется дополнить несколькими элементами: диодами и резисторами. Такой вариант неплох для эпизодически работающего двигателя. Если же планируются продолжительные нагрузки, то от экономии места и веса лучше отказаться — при случайном выходе диода из строя он начнет пропускать на накопитель переменный ток, что приведет к его пробою и взрыву.

Выходом могут служить полипропиленовые конденсаторы с металлическим напылением серии СВВ, разработанные для использования в качестве пусковых.

Как подобрать конденсатор для трехфазного электродвигателя

Для вычисления емкости основного конденсатора применяют формулу:

  • k- коэффициент, принимаемый за 4800 при схеме «треугольник» и 2800 при схеме «звезда»;
  • Iφ-ток статора, его берут из паспорта или таблички на корпусе;
  • U- напряжение сети.

Трехфазный электродвигатель

Результат получается в микрофарадах. Вместо точной формулы можно применять правило: на каждые 100 ватт мощности — 7 микрофарад емкости.

Если при старте двигателю приходится преодолевать большой момент инерции подключенного к валу оборудования, то в помощь основному на время запуска и набора номинальных оборотов подключают пусковой конденсатор.

Емкость пускового накопителя принимают в 2-3 раза больше основного.

Подключение трехфазного электродвигателя к сети

Подключение трехфазного электродвигателя к сети

После выхода на режим его обязательно отключают — вручную или с помощью автоматики. Если на рассчитанную емкость нет точно подходящего по номиналу прибора, конденсаторы можно подключать параллельно.

Как подобрать пусковой конденсатор для однофазного электромотора

До использования в пусковой цепи конденсатор проверяют тестером на исправность. При подборе рабочего конденсатора можно применять такое же приближенное правило а-7 микрофарад на 100 ватт номинальной электрической мощности. Емкость пускового также берется в 2-3 раза выше.

При подборе конденсатора на 220 вольт следует выбирать модели с номиналом не менее 400. Это объясняется переходными электромагнитными процессами при запуске, дающими кратковременные пусковые броски напряжения до 350-550 вольт.

Однофазные асинхронные электромоторы часто применяются в домашних электроприборах и электроинструменте. Для пуска таких устройств, особенно под нагрузкой, требуется пусковая обмотка и сдвиг фазы. Для этого используется конденсатор, подключаемый по одной из известных схем.

Конструкция асинхронного однофазного электродвигателя

Конструкция асинхронного однофазного электродвигателя

Если запуск осуществляется с преодолением большого момента инерции, подсоединяют пусковой конденсатор.

Почему однофазный электродвигатель запускают через конденсатор

Статор электродвигателя с единственной обмоткой при пропускании переменного тока не сможет начать вращение, а лишь начнет подрагивать. Чтобы начать вращение, перпендикулярно основной обмотке размещают пусковую. В цепь этой обмотки включают компонент для сдвига фазы, такой, как конденсатор. Электромагнитные поля этих двух обмоток, прикладываемые к ротору со сдвигом по фазе, и обеспечат начало вращения.

В трехфазном двигателе обмотки и так размещены под углами 120 ° . Соответственно сориентированы и наводимые ими в роторе электромагнитные поля. Для начала вращения достаточно обеспечить сдвиг их работы по фазе, чтобы обеспечить пусковой момент вращения.

Источник



Arduino.ru

Конденсатор на DC-двигатель

Вопрос, вроде как, простой. Но туплю что-то. И во всемирном разуме, как-то не много информации.

Итак — двигатель DC (12V, 2A). Знаю, что на контакты двигателя обычно нужно вешать конденсатор, дабы двигатель не искрил.

1. Какую-нибудь фунцию конденсатор еще на себе несет? Например, для старта двигателя.

2. (и самый важный) как расчитать параметры конденсатора (емкость, реактивная мощность)? Короче какой конденсатор нужен для указанного двигателя?

Заранее благодарен за ответы.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

ЕвгенийП аватар

Подпишусь, т.к. хочу почитать, что специалисты напишут. Общую идею расчёта я понимаю, но могу ошибаться, лучше спецов послушать. По любому, кроме тока, Вам надо ещё знать количество оборотов — ёмкость конденсатора от неё в первую очередь зависит (не от неёёё самой, а от частоты прерываний на щётках, но это одно и тоже)

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Фиг его знает какие на нем обороты, посокольку на выходе стоит коробка передач под названием «gear» 🙂 , которая эту скорость переводит в 300RPM

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

dimax аватар

Celestron, Главная характеристика двигателя -его тип. Из вашего описания не понятно к чему его отнести, если это бесщёточный -то ему не нужен конденсатор. Если коллекторный, то снова же смотря как вы им управляете. Если через ШИМ, то ёмкость обычно не ставят. В некторых моделях ёмкость уже стоит в двигателе, и установка дополнительной никакого рояля не играет..

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

для коллекторного вешают часто керамику 0,1-10мкф 3 шт: 1 между выводами, еще 2 между каждым выводом и корпусом

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Была у меня эпопея недавно с этим. Схема с автономным питанием 3шт 18650, грубо говоря 12В. От них dc/dc в 7В, от них на стабилизатор ардуино мини. Ардуина через транзисторные ключи управляет 2-я релюхами, которые включают довольно мощный движек в реверсивном включении 12В из линейного привода силой 350Н, там ток под нагрузкой до 3А. На столе имею проблему, при остановке движка нафиг ребутится контроллер, и это без какой либо нагрузки. Победил только этим конденсатором, паралельно движку 3,3мкф. Обычный вариант с диодами для реверсивного привода не прокатит. Вот такой бросок дает двигатель при коммутации, 2 стабилизатора не помогало! Может правда по земле или еще как проходило, но ребутало при останове часто, процентов в 30 при работе в одну сторону и процентов 10 в другую. Почему неравномерно — тоже не понятно.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Celestron, Главная характеристика двигателя -его тип. Из вашего описания не понятно к чему его отнести, если это бесщёточный -то ему не нужен конденсатор. Если коллекторный, то снова же смотря как вы им управляете. Если через ШИМ, то ёмкость обычно не ставят. В некторых моделях ёмкость уже стоит в двигателе, и установка дополнительной никакого рояля не играет..

dimax, согласен, не сказал, прошу прощения: коллекторный, управляется чистым напряжением (подтверждено осциллографом), которое выходит от драйвера, который, в свою очередь, управляется по ШИМ от ардуины Mega.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

для коллекторного вешают часто керамику 0,1-10мкф 3 шт: 1 между выводами, еще 2 между каждым выводом и корпусом

jeka_tm, спасибо, но вот хоца понять и посчитать, какой конкретно и главное какие иные характеристики должны быть при указанных параметрах двигателя, чтобы не разорвало или перегрело (имею ввиду конденсатор).

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

не знаю я таких расчетов. опытном путем

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

не знаю я таких расчетов. опытном путем

т.е. смотреть в щели: есть искра/нет искры?

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

искры будут в любом случае. это же щетки. щетка отходит от контакта, но ток не может мгновенно перестать течь в катушке, возникает индукция

а вообще тут смешно пишут от катушке и токе))))

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

а вообще тут смешно пишут от катушке и токе))))

Это ссылка как бы с намеком что на коллекторе искры — не искры, вот искра

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

да нет. попробуй понять из того текста что правда, а что нет

и как включение и отключение катушки (щетка скользит по контактам) равно импусьсный сигнал подается на катушку

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Поясните мне темному каким образом конденсатор избавит от искрения коллектора? Физика в чем? Теоретически конденсатор на роторе паралельно катушкам мог бы снизить искрение, работал бы как снуббер по кажению всплесков самоиндукции. Но на коллекторе как? Все что генерят катушки ротора должно сначала пройти коллектор (с искрением) и только потом погасится конденсатором

маленькие емкости как описано выше работают как фильтр высокочастотных помех, но не влияют на искрение

еще ставят большие электролиты, но их смысл в другом — они должны компенсировать провал напряжения при старте мотора когда ток максимальный. Это позволяет увеличить крутящий момент на старте и уменьшить низкочастотные помехи. Здесь кондер работает как блокирующий, буферный. На искрение не влияет, скорее наоборот, чем больше стартовый ток тем выше искрение

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Была у меня эпопея недавно с этим. Схема с автономным питанием 3шт 18650, грубо говоря 12В. От них dc/dc в 7В, от них на стабилизатор ардуино мини. Ардуина через транзисторные ключи управляет 2-я релюхами, которые включают довольно мощный движек в реверсивном включении 12В из линейного привода силой 350Н, там ток под нагрузкой до 3А. На столе имею проблему, при остановке движка нафиг ребутится контроллер, и это без какой либо нагрузки. Победил только этим конденсатором, паралельно движку 3,3мкф. Обычный вариант с диодами для реверсивного привода не прокатит. Вот такой бросок дает двигатель при коммутации, 2 стабилизатора не помогало! Может правда по земле или еще как проходило, но ребутало при останове часто, процентов в 30 при работе в одну сторону и процентов 10 в другую. Почему неравномерно — тоже не понятно.

в вашем случае сами реле тоже нехилые помехи генерят, как катушки так и контакты которые наверняка искрят при старте такого движка. Лучше использовать полномостовой полупроводниковый драйвер. В них обычно есть защитные диоды в каждом плече. Можно еще на питание ставить диод в обратном включении или быстрый или шотки. Он будет гасить прилетающую самоиндукцию обратной полярности. Tvs в прямом включении тоже не помешает — гасить всплески прямой полярности. Саму ардуину надо отделить от силовой части LC фильтром и правильно развести землю — от ардуины свой провод до минуса батареи, от силовой части свой

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии
Читайте также:  Токовый датчик переменного тока

маленькие емкости как описано выше работают как фильтр высокочастотных помех, но не влияют на искрение

еще ставят большие электролиты, но их смысл в другом — они должны компенсировать провал напряжения при старте мотора когда ток максимальный. Это позволяет увеличить крутящий момент на старте и уменьшить низкочастотные помехи. Здесь кондер работает как блокирующий, буферный. На искрение не влияет, скорее наоборот, чем больше стартовый ток тем выше искрение

Понял, спасибо! Помехи меня пока мало интересуют, а вот про старт двигателя если можно по-подробнее. Что считается большой емкостью?

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Понял, спасибо! Помехи меня пока мало интересуют, а вот про старт двигателя если можно по-подробнее. Что считается большой емкостью?

речь про тысячи и десятки тысяч микрофарад

расчитать его сложно, много переменных часть из которых может быть не известна (например стартовая кривая двигателя). Но если есть осциллограф то не сложно оценить достаточно микрофарад или нет. На емкость сильно влияют стартовый ток мотора, внутреннее сопротивление источника питания и сопротивление подводящих проводов. Важно. Конденсатор надо ставить до управляющего ключа, а не после. На момент запуска конденсатор должен быть полностью заряжен. Если поставить после ключа эффект будет обратный — кондер часть тока заберет на себя. Провода до мотора при том должны быть максимально короткие и достаточного сечения

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

От искрения может и не избавит, а вот переменную составляющую, возникающую в момент рацепления контактов, через себя замкнет. Помеха будет гасится поблизости от места возикновения, а не путешествовать по цепям питания.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

в вашем случае сами реле тоже нехилые помехи генерят, как катушки так и контакты которые наверняка искрят при старте такого движка. Лучше использовать полномостовой полупроводниковый драйвер. В них обычно есть защитные диоды в каждом плече. Можно еще на питание ставить диод в обратном включении или быстрый или шотки. Он будет гасить прилетающую самоиндукцию обратной полярности. Tvs в прямом включении тоже не помешает — гасить всплески прямой полярности. Саму ардуину надо отделить от силовой части LC фильтром и правильно развести землю — от ардуины свой провод до минуса батареи, от силовой части свой

С релюхами все четко — на обмотках диоды висят.

При старте проблем не наблюдалось.

Диоды защитные — вешал много и разных, не помогало. Получается что при таком включении, (я предполагаю — мы друг друга понимаем каком 🙂 — движок к переключающим контактам реле, обычнозамкнутые контакты, пусть на землю, разомкнутые на питание) замкнуть токи самоиндукции не через питающие цепи не получается, а через питающие — фигня с ребутами выходит.

Драйвер хороше — но проблема обнаружилась уже на готовой плате, я даже не предполагал о ней сразу. Но подозреваю что его защитные диоды не помогли бы, т.к. направляли бы помеху в питание.

Вести 2 земли не пробовал — конструкционно не выходило, раземы уже запаяны.

Про LC — думал, но дело не дошло, плату резать не хотелось.

Но кондер помог, причем явно и принципиально, о проблеме забыл вообще.

Еще был занятный момент. Аналогично ребутило при реверсе движка. Этот момент после кондера не пропал, но исправился програмно, паузой всего в 50мсек. Т.е. выключаем движек, делаем паузу, включаем в другую сторону, был удивлен что такая малая пауза оказалась значимой.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

От искрения может и не избавит, а вот переменную составляющую, возникающую в момент рацепления контактов, через себя замкнет. Помеха будет гасится поблизости от места возикновения, а не путешествовать по цепям питания.

про кондер как фильтр помех я пишу в своем посте чуть ниже вашей цитаты, но это, с вами согласен, не про искры

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

речь про тысячи и десятки тысяч микрофарад

расчитать его сложно, много переменных часть из которых может быть не известна (например стартовая кривая двигателя). Но если есть осциллограф то не сложно оценить достаточно микрофарад или нет. На емкость сильно влияют стартовый ток мотора, внутреннее сопротивление источника питания и сопротивление подводящих проводов. Важно. Конденсатор надо ставить до управляющего ключа, а не после. На момент запуска конденсатор должен быть полностью заряжен. Если поставить после ключа эффект будет обратный — кондер часть тока заберет на себя. Провода до мотора при том должны быть максимально короткие и достаточного сечения

Про ключ мысль понятна, хоть и не сразу врубился! СПАСИБО! Постараюсь попробовать. По емкости, к сожалению, я так и подозревал. Стоят уже не копейки, хотя и не заоблачно.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Logik защитные диоды при мостовом включении (в вашем случае через реле) вешаются на каждое плече, т.е. 4 штуки

да, при этом они коротят всплески на источник питания. при правильной разводке силовых проводов это нормально. у мощной нагрузки должен быть источник с низким внутренним сопротивлением, для него помехи не проблема, он их «коротит» на себя

помехи лучше минимизировать, чем просто бороться с их последствиями

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Logik защитные диоды при мостовом включении (в вашем случае через реле) вешаются на каждое плече, т.е. 4 штуки

да, при этом они коротят всплески на источник питания. при правильной разводке силовых проводов это нормально.

Диоды защитные — вешал много и разных, не помогало. замкнуть токи самоиндукции не через питающие цепи не получается, а через питающие — фигня с ребутами выходит.

Возможно конечно диод+отдельное питание+раземы другие+провода новые+может вторую АКБ и тоже помогло бы. Но один кондер как бы лучше со всех сторон.

у мощной нагрузки должен быть источник с низким внутренним сопротивлением, для него помехи не проблема, он их «коротит» на себя

помехи лучше минимизировать, чем просто бороться с их последствиями

Причем минимизировать возле места возникновения. Вот кондер на движке это и делает.

Еще момент, если не реле а мост транзисторный, то с кондером надо быть аккуратным, он ключи нагрузит сильно, а реле потерпят.

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Jeka_M аватар

Диоды защитные — вешал много и разных, не помогало. замкнуть токи самоиндукции не через питающие цепи не получается

На всякий случай уточню — т.н. superfast и ultrafast диоды тоже пробовали? То есть, не простые выпрямительные, а быстрые с малым временем открытия?

  • Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

wdrakula аватар

Я позволю себе несколько простых теоретических рассуждений о подборе конденсатора.

Все рассуждения будут не сильно количественными и базироваться будут на формулах из школьного учебника физики и здравом смысле.

1. Конденсатор помехозащитный. Нужно знать частоту, амплитуду и ток помех.

2. Нельзя поставить очень большой конденсатор, так как двигателем нужно управлять. Это ограничение «снизу».

Природа помех у ЭДПТ (Электро-Двигателя Постоянного Тока) в переключении обмоток на щеточном узле.

Напряжение на катушке, при изменении тока =L * dI/dt. Частота переключений это число оборотов в секунду умножить число ламелей коллектора.

К счастью частоту можно оценить почти ничего не зная. Число ламелей пропорционально диаметру двигателя. не стану объяснять почему — долго и не нужно. Диаметр обратно пропорционален числу оборотов(строго говоря не диаметр, а объем, но тоже опустим для простоты). Поэтому взяв типичные значения в 12 ламелей и 3000 об/мин получим частоту в 12*50=600Гц. То есть наша частота, по порядку величины, а точнее нам не нужно, лежит в диапазоне от 100 до 1000 Гц. dI/dt никак не больше, чем I умножить на эту частоту (потому, что щетка имеет размер и уходит с ламели — плавно, а не скачком).

Индуктивность обмотки одного зубца якоря — неизвестная величина, но, по соображениям сохранения энергии может быть оценена исходя из того, что энергия магнитного поля равна L * I^2 / 2. Не стану мучить читателя расчетами — L, по порядку величина оценивается как 2*U / (I * f), где f — уже оцененная частота.

Мы уже все знаем: Индуктивность не больше 12*2/200=120мГн. Следовательно амплитуда помех не выше 0.120*2*1000=240В.

То есть по напряжению конденсатор должен быть на 300-400В. Достаточно.

Емкость оценим так: за время 1/f *k (k=отношение ширины бороздки к ламели) в током I, конденсатор должен зарядиться до напряжения не выше питания U. Итак: I * (k/f) / C C > I *k/(f*U). C > 2*k/(1000*12) > k*160 мкФ. Вот k нам совсем не известно, а помеха длится пока край щетки проходит расстояние между ламелями — -то есть борозду. Потом помеха тоже продолжается, но уже с незначительной амплитудой, и связана с тем, что следующая обмотка не параллельна предыдущей. Так что «от балды» можем взять 0.01. Тогда С > 1.6 мкФ.

Вот Логик писал, что у него на 3 А движке помогло 3.3 мкФ, что очень похоже на расчет.

Ограничение сверху состоит в том, что при отключении питания нужно хотя бы за один оборот (t=10/f) остановить двигатель: C Войдите или зарегистрируйтесь, чтобы получить возможность отправлять комментарии

Источник