Меню

Действующее значение напряжения переменного тока 140 в

Учебники

Разделы физики

Журнал «Квант»

Лауреаты премий по физике

Общие

SA Переменный ток

Содержание

Переменный электрический ток

В механической системе вынужденные колебания возникают при действии на нее внешней периодической силы. Аналогично этому вынужденные электромагнитные колебания в электрической цепи происходят под действием внешней периодически изменяющейся ЭДС или внешнего изменяющегося напряжения.

Вынужденные электромагнитные колебания в электрической цепи представляют собой переменный электрический ток.

  • Переменный электрический ток — это ток, сила и направление которого периодически меняются.

Мы в дальнейшем будем изучать вынужденные электрические колебания, происходящие в цепях под действием напряжения, гармонически меняющегося с частотой ω по синусоидальному или косинусоидальному закону:

u = U_m \cdot \sin \omega t\) или \(

u = U_m \cdot \cos \omega t\) ,

где u – мгновенное значение напряжения, Um – амплитуда напряжения, ω – циклическая частота колебаний. Если напряжение меняется с частотой ω, то и сила тока в цепи будет меняться с той же частотой, но колебания силы тока не обязательно должны совпадать по фазе с колебаниями напряжения. Поэтому в общем случае

i = I_m \cdot \sin (\omega t + \varphi_c)\) ,

где φc – разность (сдвиг) фаз между колебаниями силы тока и напряжения.

Исходя из этого можно дать еще такое определение:

  • Переменный ток – это электрический ток, который изменяется с течением времени по гармоническому закону.

Переменный ток обеспечивает работу электрических двигателей в станках на заводах и фабриках, приводит в действие осветительные приборы в наших квартирах и на улице, холодильники и пылесосы, отопительные приборы и т.п. Частота колебаний напряжения в сети равна 50 Гц. Такую же частоту колебаний имеет и сила переменного тока. Это означает, что на протяжении 1 с ток 50 раз поменяет свое направление. Частота 50 Гц принята для промышленного тока во многих странах мира. В США частота промышленного тока 60 Гц.

Генератор переменного тока

Основная часть электроэнергии в мире в настоящее время вырабатывается генераторами переменного тока, создающими гармонические колебания.

  • Генератором переменного тока называется электротехническое устройство, предназначенное для преобразования механической энергии в энергию переменного тока.

ЭДС индукции генератора изменяется по синусоидальному закону

где \(<\rm E>_ =B\cdot S\cdot \omega\) — амплитудное (максимальное) значение ЭДС. При подключении к выводам рамки нагрузки сопротивлением R, через нее будет проходить переменный ток. По закону Ома для участка цепи сила тока в нагрузке

где \(I_ = \dfrac\) — амплитудное значение силы тока.

Основными частями генератора являются (рис. 1):

  • индуктор — электромагнит или постоянный магнит, который создает магнитное поле;
  • якорь — обмотка, в которой индуцируется переменная ЭДС;
  • коллектор со щетками — устройство, посредством которого снимается с вращающихся частей или подается по ним ток.

Неподвижная часть генератора называется статором, а подвижная — ротором. В зависимости от конструкции генератора его якорь может быть как ротором, так и статором. При получении переменных токов большой мощности якорь обычно делают неподвижным, чтобы упростить схему передачи тока в промышленную сеть.

На современных гидроэлектростанциях вода вращает вал электрогенератора с частотой 1-2 оборота в секунду. Таким образом, если бы якорь генератора имел только одну рамку (обмотку), то получался бы переменный ток частотой 1-2 Гц. Поэтому, для получения переменного тока промышленной частоты 50 Гц якорь должен содержать несколько обмоток, позволяющих увеличить частоту вырабатываемого тока. Для паровых турбин, ротор которых вращается очень быстро, используют якорь с одной обмоткой. В этом случае частота вращения ротора совпадает с частотой переменного тока, т.е. ротор должен делать 50 об/с.

Мощные генераторы вырабатывают напряжение 15-20 кВ и обладают КПД 97-98 %.

Из истории. Первоначально Фарадей обнаружил лишь едва заметный ток в катушке при движении вблизи нее магнита. «Какая от этого польза?» — спросили его. Фарадей ответил: «Какая может быть польза от новорож­денного?» Прошло немногим более половины столетия и, как сказал американский физик Р. Фейнман, «бесполезный новорожденный превратился в чудо-богатыря и изменил облик Земли так, как его гордый отец не мог себе и представить».

*Принцип действия

Принцип действия генератора переменного тока основан на явлении электромагнитной индукции.

Пусть проводящая рамка площадью S вращается с угловой скоростью ω вокруг оси, расположенной в ее плоскости перпендикулярно однородному магнитному полю индукцией \(\vec\) (см. рис. 1).

При равномерном вращении рамки угол α между направлениями вектора индукции магнитного поля \(\vec\) и нормали к плоскости рамки \(\vec\) меняется со временем по линейному закону. Если в момент времени t = 0 угол α = 0 (см. рис. 1), то

где ω — угловая скорость вращения рамки, ν — частота ее вращения.

В этом случае магнитный поток, пронизывающий рамку будет изменяться следующим образом

Тогда согласно закону Фарадея индуцируется ЭДС индукции

Подчеркнем, что ток в цепи проходит в одном направлении в течение полуоборота рамки, а затем меняет направление на противоположное, которое также остается неизменным в течение следующего полуоборота.

Действующие значения силы тока и напряжения

Пусть источник тока создает переменное гармоническое напряжение

Согласно закону Ома, сила тока в участке цепи, содержащей только резистор сопротивлением R, подключенный к этому источнику, изменяется со временем также по синусоидальному закону:

где \(I_m = \dfrac>.\) Как видим, сила тока в такой цепи также меняется с течением времени по синусоидальному закону. Величины Um, Im называются амплитудными значениями напряжения и силы тока. Зависящие от времени значения напряжения u и силы тока i называют мгновенными.

Кроме этих величин используются еще одна характеристика переменного тока: действующие (эффективные) значения силы тока и напряжения.

  • Действующим (эффективным) значением силы переменного тока называется сила такого постоянного тока, который, проходя по цепи, выделяет в единицу времени такое же количество теплоты, что и данный переменный ток.

Обозначается буквой I.

  • Действующим (эффективным) значением напряжения переменного тока называется напряжение такого постоянного тока, который, проходя по цепи, выделяет в единицу времени такое же количество теплоты, что и данный переменный ток.

Обозначается буквой U.

Действующие (I, U) и амплитудные (Im, Um) значения связаны между собой следующими соотношениями:

Таким образом, выражения для расчета мощности, потребляемой в цепях постоянного тока, остаются справедливыми и для переменного тока, если использовать в них действующие значения силы тока и напряжения:

Необходимо отметить, что закон Ома для цепи переменного тока, содержащей только резистор сопротивлением R, выполняется как для амплитудных и действующих, так и для мгновенных значений напряжения и силы тока, вследствие того, что их колебания совпадают по фазе.

*Вывод формулы

Зная мгновенные значения u и i, можно вычислить мгновенную мощность

которая, в отличие от цепей постоянного тока, изменяется с течением времени. С учетом уравнений (1) и (2) перепишем выражение для мгновенной мощности на резисторе в виде

Первое слагаемое не зависит от времени. Второе слагаемое P2 — функция косинуса удвоенного угла и ее среднее значение за период колебаний равно нулю (рис. 2, найдите сумму площади выделенных фигур с учетом знаков).

Читайте также:  Лампа накаливания 40вт ток

Поэтому среднее значение мощности переменного электрического тока за период будет равно

Тогда с учетом закона Ома \(\left(I_ =\dfrac> \right)\) получаем:

По определению действующих значений необходимо сравнивать мощности (количество теплоты в единицу времени) переменного и постоянного тока. Запишем уравнения для расчета мощности постоянного тока

и сравним с уравнениями (4>:

Литература

Жилко, В.В. Физика: учеб. пособие для 11 класса общеобразоват. шк. с рус. яз. обучения / В.В. Жилко, Л.Г. Маркович. — Минск: Нар. Асвета, 2009. — С. 46-51.

Источник

В цепи переменного тока напряжение меняется по закону u=140 sin πt. Определите действующее значение напряжения.​

Ответ

Ответы

Ответ

Ответ

по специальной договоренности с редколлегией и редакцией журнала «квант»

движению тела обычно препятствуют силы трения. если соприкасаются поверхности твердых тел, их относительному движению мешают силы сухого трения. характерной особенностью сухого трения является существование зоны застоя. тело нельзя сдвинуть с места, пока абсолютная величина внешней силы не превысит определенного значения. до этого момента между поверхностями соприкасающихся тел действует сила трения покоя, которая уравновешивает внешнюю силу и растет вместе с ней (рис. 1).

максимальное значение силы трения покоя определяется формулой

где μ— коэффициент трения, зависящий от свойств соприкасающихся поверхностен; n — сила нормального давления.

когда абсолютная величина внешней силы превышает значение fтр max, возникает относительное движение — проскальзывание. сила трения скольжения обычно слабо зависит от скорости относительного движения, и при малых скоростях ее можно считать равной fтр max.

движению тела в жидкости и газе препятствуют силы жидкого трения. главное отличие жидкого трения от сухого — отсутствие зоны застоя. в жидкости или газе не возникают силы трения покоя, и поэтому даже малая внешняя сила способна вызвать движение тела. сила жидкого трения при малых скоростях пропорциональна скорости, а при больших — квадрату скорости движения.

1. при экстренной остановке поезда, двигающегося со скоростью υ = 70 км/ч. тормозной путь составил s = 100 м. чему равен коэффициент трения между колесами поезда и рельсами? каким станет тормозной путь, если откажут тормоза в одном из n = 10 вагонов? массу локомотива принять равной массе вагона; силами сопротивления воздуха пренебречь.

при торможении ускорение а поезду сообщает сила трения fтр:

где μ — масса всего состава. сила трения представляет собой равнодействующую всех сил трения, действующих на состав (рис. 2), и равна по модулю .

с другой стороны, . подставляя это значение в выражение для μ, получаем

в том случае, когда не работают тормоза у одного из вагонов, суммарная сила трения, действующая на вагоны и локомотив, равна

где m — масса одного вагона. масса всего состава равна μ = (п + 1)∙m, так что . ускорение поезда в этом случае равно

Источник

ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПЕРЕМЕННОГО ТРЕХфазного ТОКА

Примеры решения задач

Электроизмерительные приборы и электрические измерения

Задача № 1

Вольтметр с пределом измерения 7,5 В и максимальным числом делений 150 имеет наибольшую абсолютную погрешность Зб мВ. Определить класс точности прибора и относительную погрешность в точках 40, 80, 90, 100 и 120 делений.

Решение

С = Uмак / N = 0,05 В/дел ;

e = DU/Uизм × 100% = 1,8 %; 0,9 %; 0,8 %; 0,72 %; 0,6 %.

Задача № 2

Для расширения предела измерения амперметра с внутренним сопротивлением Rпр=0,5 Ом в 50 раз необходимо подключить шунт. Определить сопротивление шунта, ток полного отклонения прибора и максимальное значение тока на расширенном пределе, если падение напряжения на шунте Uш = 75 мВ.

Решение

Задача № 3

Магнитоэлектрический прибор с сопротивлением 10 Ом и током полного отклонения 7,5 мА может быть использован в качестве амперметра на 30 А. Определить сопротивление шунта.

Решение

Задача № 4

Милливольтметр с пределом измерения 75 мВ и внутренним сопротивлением Rп=25 Ом имеет 150 делений шкалы. Определить сопротивление шунта, чтобы прибором можно было измерять предельное значение тока 30 А. Определить цену деления прибора в обоих случаях.

Решение

Задача № 5

Верхний предел измерений вольтметра 100 В, его внутреннее сопротивление 10 кОм, число делений шкалы 100. Определить цену деления шкалы вольтметра, если он включен с добавочным резистором 30 кОм.

n = U ’ / U => U ’ = nU;

Задача № 6

Верхний предел измерения амперметра 1 А, его сопротивление RA . Определить сопротивление шунта Rш, чтобы при токе 5 А прибор показывал ток 1 А.

ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПЕРЕМЕННОГО однофазного ТОКА

Задача № 7

Определите действующее значение тока

i = 341sin (ωt + π/2) (А)

Задача № 8

Период переменного тока Т. В какой момент времени мгновенное значение тока достигает положительного максимума, если ток задан выражением i = imsin (ωt + π/4)?

Задача № 9

Действующее значение тока в цепи равно 1 А. Полное сопротивление цепи 10 Ом. Векторная диаграмма имеет вид:

Чему равна амплитуда напряжения, приложенного к цепи, и каков характер сопротивления?

Электрическая цепь обладает емкостным сопротивлением.

Задача № 10

В электрической цепи все элементы соединены последовательно. По векторной диаграмме напряжений восстановите принципиальную схему этой цепи.

Задача № 11

К резистору сопротивлением R=1,5 кОм приложено напряжение u=120sin(wt—p/6) В. Записать выражение для мгновенного значения тока, определить его амплитудное и действующее значения, мощность. Построить векторную диаграмму для момента времени t =0.

i = (u/R)sin(wt — p/6); im = um/ R = 0,08 A; i = 0,08sin(wt — p/6);

Задача №12

Действующее значение переменного напряжения U, измеренное на резисторе сопротивлением R=1,2 к0м, составляет 820 мВ. Начальная фаза ju = p/6 частота f = 150 Гц. Определить амплитудное и действующее значения тока в резисторе, записать выражение для его мгновенного значения. Зарисовать кривые изменения тока и напряжения и построить векторную диаграмму.

i = 0,96sin(942t + p/6).

Задача № 13

Через катушку индуктивности сопротивлением XL=1,2 Ом проходит переменный ток частотой f = 800 Гц и амплитудным значением Im =450 мА. Определить индуктивность катушки, действующее значение напряжения на ней, а также полную потребляемую мощность. Записать выражение для мгновенного значения напряжения на катушке.

Решение:

L = XL / 2pf = 0,24 мГн;

Задача № 14

Действующие значения переменного напряжения и тока с частотой f = 25 Гц в катушке индуктивности U = 36,5 В и I = 1,25 А соответственно. Определить индуктивность катушки, записать выражения — для мгновенных значений напряжения и тока, построить графики изменения этих значений во времени.

XL = U / I = 29,2 Ом;

L = XL / 2pf = 0,18 мГн;

Задача № 15

Мгновенные значения тока и напряжения в конденсаторе i = 0,72 sin(2198t+50°) А и u = 340sin(2198t — 40°) В. Определить емкость и сопротивление конденсатора, полную потребляемую мощность и период сигнала.

I = im / = 0,51 А; U = um / = 241 В;

XC = U / I = 472 Ом

C = 1 / w XC = 96 мкФ;

Т = 2p / w = 2,8×10 -3 с

Задача № 16

Два последовательно соединенных конденсатора емкостями С1=2 мкф и С2=1 мкФ подключены к источнику с частотой f = 100 Гц и действующим значением напряжения U = 105В. Определить действующие значения тока в цепи и напряжений на каждом из конденсаторов.

Читайте также:  Сила тока все термины

1 / 2pfC2 = 796,18 Ом;

I = U / XC = 0,044 A;

Задача № 17

В цепь переменного синусоидального тока частоты 50 Гц включены последовательно потребители: катушка индуктивности 0,4 Гн, резистор с сопротивлением 16 Ом и конденсатор емкостью 400 мкФ. Полное падение напряжения в цепи 500 В. Определить ток в цепи, напряжение на отдельных потребителях и активную мощность цепи.

XL = 2pfL = 125,6 Ом;

Z = (R 2 + (XL — XC) 2 ) 1/2 = 118,8 Ом;

P = UIcosj = 282,8 Вт.

Задача № 18

Полное сопротивление катушки 8 Ом, её индуктивность 300 мкГн. Действующее значение падения напряжения на ней составляет 4,8 В при частоте 2500 Гц. Определить угол сдвига фаз между током и напряжением и определить полную, активную и реактивную мощности, активное сопротивление катушки.

Z = (RL 2 + XL 2 ) 1/2 => RL = ( Z 2 — XL 2 ) 1/2 = 6,5 Ом;

P = Scos j = 2,32 Вт;

Q = Ssin j = 1,69 вар.

Задача № 19

К потребителю, состоящему из последовательно соединенных резистора и конденсатора, подведено переменное напряжение с действующим значением 500 В. Активная мощность потребителя 320 Вт, коэффициент мощности равен 0,75. Определить ток в цепи, полную и реактивную мощность, полное, активное и реактивное сопротивление потребителя.

S = P/ Scos j = 426 ВА;

Q = Ssin j = 282 вар;

R = Z cos j = 441 Ом;

XC = Z sin j = 388 Ом.

Задача № 20

Катушка с индуктивным сопротивлением 140 Ом и конденсатор с емкостным сопротивлением 80 Ом соединены последовательно и подключены к источнику переменного тока с действующим значением напряжения 25 В и частотой 1 кГц. Амплитудное значение тока в цепи равно 282 мА. Определить полное сопротивление потребителя, активное сопротивление катушки и активную мощность.

I = im / 2 1/2 = 0,2 A;

Z = U / I = 125 Ом;

P = UIcosj = 4,4 Вт.

Задача № 21

К источнику переменного тока с действующим значением напряжения 50 В подключены параллельно соединенные катушка индуктивности с индуктивным сопротивлением 8 Ом и резистор сопротивлением 40 Ом. Определить токи в ветвях и неразветвленной части цепи и коэффициент мощности.

tg j =IL / IR = 5; j = 79 0 ; cosj = 0,19.

Задача № 22

Электрическая цепь состоит из включенных параллельно резистора, конденсатора и катушки индуктивности. Токи во всех трех ветвях одинаковы и равны 15 А. Определить ток в неразветвленной части цепи.

Задача № 23

Соединенные параллельно катушка индуктивности и конденсатор подключены к источнику переменного тока с напряжением 100 В. Определить ток в неразветвленной части цепи при индуктивном сопротивлении 20 Ом и емкостном сопротивлении 10 Ом.

К источнику переменного тока подключен резистор сопротивлением R = 160 Oм, соединенный параллельно с катушкой, индуктивность которой L = 0,023 Гн и активное сопротивление RL = 60 Ом. Мощность, выделившаяся на резисторе, Р = 35 Вт, действующее значение тока в катушке IL =702,5 мА. Определить емкость конденсатора, который необходимо подключить в цепь для получения резонанса токов, резонансную частоту, действующие значения входного напряжения и тока в неразветвленной части цепи до резонанса и в момент резонанса, а также активную и реактивную составляющие тока, полную, активную и реактивную мощности до резонанса и в момент резонанса. Построить векторные диаграммы для этих двух режимов.

Решение:

f = ( 1/2pL ) ( ZL 2 — RL 2 ) 1/2 = 612 Гц, XL= 88,4 Ом

cos j = 0,83 sin j = 0,56 S = UI = 77,6 В×А P = UI cos j = 64,4 Вт Q = UI sin j = 43,3 вар

XL = XC => C = 1/(4p 2 f 2 L) = 2,9 мкФ

Задача № 25

Чему равен ток в неразветвленной части цепи?

Задача № 26

К электрической цепи прикладывается напряжение U = 160 В. Сопротивление резистора R = 20 Ом, сопротивление катушки индуктивности XL = 60 Ом. Определить напряжение на конденсаторе при резонансе.

При резонансе в цепи протекает электрический ток = 8 А. При резонансе напряжений падение напряжения на катушке равно падению напряжения на конденсаторе.

Задача № 27

Последовательно соединены R, L и C. L = 0,1 Гн; XC = 31,4 Ом; f = 50 Гц. Выполняются ли условия резонанса?

=> = 100 мкФ; = 28,4 Гц. Не выполняется.

Задача № 28

Последовательно соединены R, L и C. При каком условии векторная диаграмма имеет вид, изображенный на рисунке?

При резонансе напряжений. XL = XC

ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПЕРЕМЕННОГО ТРЕХфазного ТОКА

Задача № 29

Полная мощность, потребляемая трехфазной нагрузкой 1000 В·А. Реактивная мощность 600 Вар. Найдите коэффициент мощности нагрузки.

Задача № 30

Три одинаковые катушки включены в трехфазную сеть с линейным напряжением 380 В. Активное сопротивление каждой катушки 16 Ом, индуктивное 12 Ом. Катушки соединены треугольником. Определите активную мощность, потребляемую катушками.

Из треугольника сопротивлений è

Задача № 31

К трехфазной сети с линейным напряжением 380 В и частотой 50 Гц подключена равномерная нагрузка, соединенная звездой, с активным сопротивлением в фазе 70 Ом и индуктивностью 180 мГн. Определить линейный ток.

Задача № 32

В трехфазную сеть с действующим значением напряжения в фазе 380 В и частотой 50 Гц включена равномерная индуктивная нагрузка, соединенная треугольником. Коэффициент мощности нагрузки 0,85, а потребляемая мощность 1,44 кВт. Определить индуктивность катушек.

, из треугольника сопротивлений =>

Задача № 33

В каждую фазу трехфазной четырехпроводной цепи с нейтральным проводом последовательно включены активные, индуктивные и емкостные сопротивления. Сопротивления во всех фазах одинаковы и равны: активные 8 Ом, индуктивные 12 Ом, емкостные 6 Ом. Линейное напряжение сети 220 В. Определить фазные токи.

Задача № 34

Индуктивный потребитель мощностью 4,8 кВт соединен треугольником и подключен к трехфазной сети с линейным напряжением 380 В и частотой 50 Гц. Коэффициент мощности потребителя равен 0,8. Определить линейный ток.

Задача № 35

К источнику трехфазной сети с линейным напряжением Uл =380 В и частотой f = 50 Гц подключена равномерная нагрузка, соединенная звездой, с полным сопротивлением в фазе 90Ом и индуктивностью L = 180 мГн. Определить активную, реактивную и полную мощности, коэффициент мощности, действующие значения линейного тока и напряжения. Построить векторную диаграмму токов и напряжений.

Решение.

Реактивное сопротивление в фазе

Активное сопротивление в фазе

R = (Z 2 — XL 2 ) 1/2 = 70 Ом.

Коэффициент мощности катушки

Мощности, потребляемые нагрузкой:

Векторная диаграмма токов и напряжений представлена на рисунке:

Задача № 36

К трехфазной четырехпроводнрй сети с дей­ствующим значением линейного напряжения Uл= 380 В и частотой f = 50 Гц подключен приемник энергии, соединенный звездой. В фазу А включена катушка с индуктивностью L = 0,18 Гн и активным сопротивлением RA = 80 Ом, в фазу В -резистор сопротивлением RB = 69 Ом, в фазу С — конденсатор емкостью С = 30 мкФ с последова­тельно соединенным резистором сопротивлением RC = 40 Ом. Определить действующие значения линей­ных и фазных токов, полную потребляемую нагруз­кой мощность.

Решение.

в фазе С: ZC = (RC 2 + XC 2 ) 1/2 = 110 Ом.

Коэффициенты мощности в фазах:

Полная мощность нагрузки: S = (P 2 + Q 2 ) 1/2 = 1280 В×А

Задача № 37

В трехфазную сеть с действующим значением линейного напряжения 220 В и частотой 50 Гц включен потребитель, соединенный тре­угольником и имеющий равномерную нагрузку, со­стоящую из катушки с индуктивностью L = 0,3 Гн и последовательно включенного с ней резистора с активным сопротивлением 20 Ом в каждой фазе. Определить действующие значения линейных и фаз­ных токов, фазное напряжение, потребляемую полную, активную и реактивную мощности.

Читайте также:  Как выбрать сварочный ток при рдс

Решение.

Полное сопротивление нагрузки в фазе

Z = (R 2 + XL 2 ) 1/2 = 96 Ом.

Коэффициент мощности: cosj = R /Z = 0,208;

Активная: P = 3Uф Iф cosj = 317 Вт.

Реактивная: Q = 3Uф Iф sinj = 1470 вар.

Трансформатор

Задача № 38

Трехфазный трансформатор, обмотки которого соединены способом «звезда‑звезда», имеет следующие характеристики: потери холостого хода 140 Вт, потери в режиме короткого замыкания 650 Вт. Трансформатор отдает в нагрузку активную мощность 6000 Вт. Коэффициент загрузки трансформатора 0,8. Определить КПД трансформатора.

Задача № 39

Номинальное напряжение первичной обмотки трехфазного трансформатора, обмотки которого соединены способом «звезда‑звезда», равно10 кВ. Амплитудное значение магнитной индукции в сердечнике трансформатора 1,6 Тл, площадь поперечного сечения магнитопровода трансформатора 25см 2 , вторичная обмотка содержит 65 витков. Линейный коэффициент трансформации равен 15. Найдите частоту переменного тока в сети.

Задача № 40

Обмотки трехфазного трансформатора соединены способом «звезда‑звезда». Трансформатор имеет следующие характеристики: U = 690 В, Bm = 1,3 Тл, N2 = 70 витков. Частота переменного тока в сети 100 Гц. Определите площадь поперечного сечения магнитопровода.

Задача № 41

Трехфазный трансформатор характеризуется следующими параметрами: номинальный ток вторичной обмотки 87 А, потери холостого хода трансформатора 800 Вт, потери короткого замыкания 4000 Вт, КПД трансформатора 0,92. Рабочий ток во вторичной обмотке равен 71 А. Какая активная мощность передается нагрузке от трансформатора?

Задача № 42

Трехфазный трансформатор характеризуется следующими параметрами: полная мощность трансформатора 160 кВ×А, потери короткого замыкания 3000 Вт, КПД трансформатора 0,95. Трансформатор отдает нагрузке активную мощность 100 кВт. Коэффициент мощности нагрузки 0,85. Чему равны потери холостого хода?

Задача № 43

Чему равна полная мощность трехфазного трансформатора с номинальным током вторичной обмотки 91 А, если нагрузке с коэффициентом мощности 0,75 передается активная мощность 1000 кВт? Рабочий ток при этом равен 80 А.

Асинхронные двигатели

Задача № 44

Три катушки обмотки статора асинхронного двигателя питаются трехфазным током частотой 50 Гц. Частота вращения ротора 2850 об/мин. Найдите скольжение.

Задача № 45

Скольжение асинхронного двигателя 5 %; частота питающей сети 50 Гц; число пар полюсов вращающегося магнитного поля р = 1. Найдите частоту вращения ротора.

Задача № 46

Определить число полюсов у статора обмотки асинхронного трехфазного двигателя, имеющего номинальную частоту вращения 750 об/мин.

Задача № 47

Частота питающего тока 50 Гц. Найдите скорость вращения четырехполюсного вращающегося магнитного поля в об/мин.

Задача № 48

Чему равна сумма потерь асинхронного двигателя при КПД 90%, если он потребляет активную мощность 20 кВт?

Задача № 49

Определите КПД асинхронного двигателя, если потери энергии в нем 5 кВт, а потребляемая из сети мощность 25 кВт.

Источник

Действующее значение напряжения переменного тока 140 в

Напряжение в цепи переменного тока изменяется по закону u=140sin314t. Определить действующее значение напряжения.

1. 140 В 2. 224 В 3. 197 В 4. 99 В

поскольку U=U нулевое*sinWt

потому что 140 стоит на месте U нулевого

На каждой оси 2 колеса, значит
S=8S₁=0.008м²
p=F/S
F=mg=60000*10=600000 (Н)
p=600000/0.008=75000000 (Па)
Ответ: 75 МПа

при гамма-излучении не происходит измения ни массового числа ни зарядового числа.изменение происходит только при альфа- и бета-излучениях.

g0 = 9,8 м/с² − ускорение свободного падения у поверхности Земли
R = 6400 км − радиус Земли
g = 1 м/с² − ускорение свободного падения на высоте H над Землёю
=========================================================
H − ? высота

Ускорение свободного падения (напряжённость гравитационного поля Земли) определяется из закона всемирного тяготения:

где G − гравитационная постоянная,
M − масса Земли
Выразим из уравнений G•M:

Мы получили выражение теоремы Остроградского-Гаусса: ускорение
свободного падения обратно пропорционально квадрату расстояния
до центра Земли.
Решим уравнение относительно высоты H:

(R + H)/R = 1 + H/R = √(g0/g)
H = R•[√(g0/g) − 1]

Источник



Что такое действующее, среднеквадратичное, эффективное напряжение или ток

Среднее значение переменного синусоидального напряжения или тока

Говоря о величине, изменяющейся по синусоидальному (гармоническому) закону, можно за половину периода определить ее среднее значение. Поскольку ток в сети у нас в подавляющем большинстве случаев синусоидальный, то для этого тока также легко может быть найдена средняя его величина (за половину периода), достаточно прибегнуть к операции интегрирования, установив пределы от 0 до Т/2. В результате получим:

Среднее значение переменного синусоидального тока

Подставив Пи = 3,14, найдем среднюю, за половину периода, величину синусоидального тока в зависимости от его амплитуды. Аналогичным образом находится среднее значение синусоидальной ЭДС или синусоидального напряжения U:

среднее значение синусоидальной ЭДС и синусоидального напряжения

Действующее значение тока I или напряжения U

Однако среднее значение не так широко применяется на практике, как действующее значение синусоидального тока или напряжения. Действующее значение синусоидально меняющейся во времени величины — есть среднеквадратичное, другими словами — эффективное ее значение.

Что такое действующее, среднеквадратичное, эффективное напряжение или ток

Эффективное (или действующее) значение тока или напряжения находится так же, путем интегрирования, но уже по отношению к квадратам, и с последующим извлечением квадратного корня, причем пределы интегрирования теперь — целый период синусоидальной функции.

Итак, для тока будем иметь:

Эффективное значение тока

Подставив значение корня из 2, получим формулу для нахождения эффективного (действующего, среднеквадратичного) значения тока, напряжения, ЭДС — по отношению к амплитудному значению. Эту формулу можно встретить очень часто, ее используют всюду в расчетах, связанных с цепями переменного синусоидального тока:

Эффективное значение ЭДС и напряжения

С практической точки зрения, если сравнить тепловое действие тока переменного синусоидального с тепловым действием тока постоянного непрерывного, на протяжении одного и того же периода времени, на одной и той же активной нагрузке, то выяснится, что выделенная за период синусоидального переменного тока теплота окажется равна выделенной за это же время теплоте от тока постоянного, при условии, что величина постоянного тока будет меньше амплитуды тока переменного в корень из 2 раз:

Величина постоянного тока будет меньше амплитуды тока переменного в корень из 2 раз

Это значит, что действующее (эффективное, среднеквадратичное) значение синусоидального переменного тока численно равно такому значению постоянного тока, при котором тепловое действие (выделяемое количество теплоты) этого постоянного тока на активном сопротивлении за один период синусоиды равно тепловому действию данного синусоидального тока за тот же период.

Аналогичным образом находится действующее (эффективное, среднеквадратичное) значение синусоидального напряжения или синусоидальной ЭДС.

Мультиметр

Подавляющее большинство современных портативных измерительных приборов, измеряя переменный ток или переменное напряжение, показывают именно действующее значение измеряемой величины, то есть среднеквадратичную величину, а не ее амплитуду и не среднее значение за полпериода.

Если других уточняющих настроек на приборе нет, а стоит значок

U – измерены будут действующие значения тока и напряжения. Обозначения для конкретно амплитуды или конкретно действующего — Im (m — maximum – максимум, амплитуда) или Irms (rms — Root Mean Square – среднеквадратичное значение).

Источник