Меню

Датчик тока для ардуино gy712

Использование датчика тока ACS712. Часть 1 — Теория

Allegro ACS712

Измерение и контроль протекающего тока являются принципиальным требованием для широкого круга приложений, включая схемы защиты от перегрузки по току, зарядные устройства, импульсные источники питания, программируемые источники тока и пр. Один из простейших методов измерения тока –использование резистора с малым сопротивлением, – шунта между нагрузкой и общим проводом, падение напряжения на котором пропорционально протекающему току. Несмотря на то, что данный метод очень прост в реализации, точность измерений оставляет желать лучшего, т.к. сопротивление шунта зависит от температуры, которая не является постоянной. Кроме того, такой метод не позволяет организовать гальваническую развязку между нагрузкой и измерителем тока, что очень важно в приложениях, где нагрузка питается высоким напряжением.

Датчик тока Allegro ACS712

Основные недостатки измерения тока с помощью резистивного шунта:

  • нагрузка не имеет прямой связи с «землей»;
  • нелинейность измерений, обусловленная температурным дрейфом сопротивления резистора;
  • отсутствие гальванической развязки между нагрузкой и схемой измерения.

В статье мы рассмотрим экономичный и прецизионный интегральный датчик тока Allegro ACS712, принцип его работы, основанный на эффекте Холла, характеристики и способ подключения к микроконтроллеру для измерения постоянного тока. Статья разделена на две части: первая посвящена устройству и характеристикам датчика, вторая – интерфейсу с микроконтроллером и работе с датчиком.

Датчик тока ACS712 основан на принципе, открытом в 1879 году Эдвином Холлом (Edwin Hall), и названным его именем. Эффект Холла состоит в следующем: если проводник с током помещен в магнитное поле, то на его краях возникает ЭДС, направленная перпендикулярно, как к направлению тока, так и к направлению магнитного поля. Эффект иллюстрируется Рисунком 2. Через тонкую пластину полупроводникового материала, называемую элементом Холла, протекает ток I. При наличии магнитного поля на движущиеся носители заряда (электроны) действует сила Лоренца, искривляющая траекторию движения электронов, что приводит к перераспределению объемных зарядов в элементе Холла. Вследствие этого на краях пластины, параллельных направлению протекания тока, возникает ЭДС, называемая ЭДС Холла. Эта ЭДС пропорциональна векторному произведению индукции B на плотность тока I и имеет типовое значение порядка нескольких микровольт.

Микросхема ACS712 выпускается в миниатюрном 8-выводном корпусе SOIC для поверхностного монтажа (Рисунок 3). Она состоит из прецизионного линейного датчика Холла с малым напряжением смещения и медного проводника, проходящего у поверхности чипа и выполняющего роль сигнального пути для тока (Рисунок 4). Протекающий через этот проводник ток, создает магнитное поле, воспринимаемое встроенным в кристалл элементом Холла. Сила магнитного поля линейно зависит от проходящего тока. Встроенный формирователь сигнала фильтрует создаваемое чувствительным элементом напряжение и усиливает его до уровня, который может быть измерен с помощью АЦП микроконтроллера.

Микросхема ACS712 в корпусе SOIC

Внутренняя конструкция датчика тока ACS712

На Рисунке 5 показано расположение выводов ACS712 и типовая схема его включения. Выводы 1, 2 и 3,4 образуют проводящий путь для измеряемого тока с внутренним сопротивлением порядка 1.2 мОм, что определяет очень малые потери мощности. Его толщина выбрана такой, чтобы прибор выдерживал силу тока в пять раз превышающую максимально допустимое значение. Контакты силового проводника электрически изолированы от выводов датчика (выводы 5 – 8). Расчетная прочность изоляции составляет 2.1 кВ с.к.з.

В низкочастотных приложениях часто требуется включить на выходе устройства простой RC фильтр, чтобы улучшить отношение сигнал-шум. ACS712 содержит внутренний резистор RF, соединяющий выход встроенного усилителя сигнала со входом выходной буферной схемы (см. Рисунок 6). Один из выводов резистора доступен на выводе 6 микросхемы, к которому подключается внешний конденсатор CF. Следует отметить, что использование конденсатора фильтра приводит к увеличению времени нарастания выходного сигнала датчика и, следовательно, ограничивает полосу пропускания входного сигнала. Максимальная полоса пропускания составляет 80 кГц при емкости фильтрующего конденсатора равной нулю. С ростом емкости CF полоса пропускания уменьшается. Для снижения уровеня шума при номинальных условиях рекомендуется устанавливать конденсатор CF емкостью 1 нФ.

Чувствительность и выходное напряжение ACS712

Выходное напряжение датчика пропорционально току, протекающему через проводящий путь (от выводов 1 и 2 к выводам 3 и 4). Выпускается три варианта токового датчика для разных диапазонов измерения:

  • ±5 А (ACS712-05B),
  • ±20 А (ACS712-20B),
  • ±30 А (ACS712-30A)

Соответствующие уровни чувствительности составляют 185 мВ/А, 100 мА/В и 66 мВ/A. При нулевом токе, протекающем через датчик, выходное напряжение равно половине напряжения питания (Vcc/2). Необходимо заметить, что выходное напряжение при нулевом токе и чувствительность ACS712 пропорциональны напряжению питания. Это особенно полезно при использовании датчика совместно с АЦП.

Точность любого АЦП зависит от стабильности источника опорного напряжения. В большинстве схем на микроконтроллерах в качестве опорного используется напряжение питания. Поэтому при нестабильном напряжении питания измерения не могут быть точными. Однако если опорным напряжением АЦП сделать напряжение питания датчика ACS712, его выходное напряжение будет компенсировать любые ошибки аналого-цифрового преобразования, обусловленные флуктуациями опорного напряжения.

Читайте также:  Математическая модель силы тока

Рассмотрим эту ситуацию на конкретном примере. Допустим, что для опорного напряжения АЦП и питания датчика ACS712 используется общий источник Vcc = 5.0 В. При нулевом токе через датчик его выходное напряжение составит Vcc/2 = 2.5 В. Если АЦП 10-разрядный (0…1023), то преобразованному выходному напряжению датчика будет соответствовать число 512. Теперь предположим, что вследствие дрейфа напряжение источника питания установилось на уровне 4.5 В. Соответственно, на выходе датчика будет 4.5 В/2 = 2.25 В, но результатом преобразования, все равно, будет число 512, так как опорное напряжение АЦП тоже снизилось до 4.5 В. Точно также, и чувствительность датчика снизится в 4.5/5 = 0.9 раз, составив 166.5 мВ/А вместо 185 мВ/А. Как видите, любые колебания опорного напряжения не будут источником ошибок при аналого-цифровом преобразовании выходного напряжения датчика ACS712.

На Рисунке 7 представлены номинальные передаточные характеристики датчика ACS712-05B при напряжении питания 5.0 В. Дрейф выходного напряжения в рабочем диапазоне температур минимален благодаря инновационной технологии стабилизации.

Часть 2 — Подключение датчика к микроконтроллеру и работа с ним

Перевод: Vadim по заказу РадиоЛоцман

Источник

Arduino Pro Mini + токовый датчик GY-712 ведут контроль перегорания ламп

Всем привет. Хочу поделится одним из проектом созданным на базе Arduino.
Для меня работа с токовыми датчиками GY-712 была впервые. Перед созданием этого проекта создавался тестовый блок.

image

Если вам уже интересно, тогда продолжим.

Здесь я расскажу об одном модуле, так как описывать и зарисовывать 7 модулей не очень-то и легко.

Было тех задание:
1) Лампы(фонари) 50-65ВТ 220В переменка или 24В постоянка;
2) Индикация работы лампы (светодиод на панели);
3) Звуковая индикация перегоревшей лампы.

Решение было принято такое:
Используем токовый датчик GY-712 5А

image

По причинам:
1) Меряет переменный и постоянный ток;
2) Легко подключается к контроллеру;
3) Компактный;
4) Недорогой при заказе с Китая.

Давайте посмотрим на схему:

image

Как работает программа.

При старте он проверяется, включен ли тумблер, если включен ты выдается звуковой сигнал и световая индикация, что бы датчик можно было откалибровать без нагрузки. Если тумблер выключить то прога выдаст звук + индикация.
Далее идет калибровка. После калибровки – звуковой сигнал.

И стартует основная программа. Контроль тумблера, если включен то контроль тока нагрузки лампы, если ток выше заданного порога то включить индикацию если тока нет, то выключить индикацию и выдать звуковой сигнал.

Вот простая схема без контроля тумблера, просто световая индикация. Это на тот случай кому просто нужен будет световой индикатор нагрузки – но тогда можно просто намотать на ферритовое кольцо провода(сделать трансформатор тока) и подключить светодиодик.

image

image

image

image

float srab = 0.650;

const int currentPin1 = 0; // Аналоговый вход с датчика тока

const unsigned long sampleTime = 100000UL; // sample over 100ms, it is an exact number of cycles for both 50Hz and 60Hz mains
const unsigned long numSamples = 250UL; // choose the number of samples to divide sampleTime exactly, but low enough for the ADC to keep up
const unsigned long sampleInterval = sampleTime/numSamples; // the sampling interval, must be longer than then ADC conversion time
//const int adc_zero = 512; // relative digital zero of the arudino input from ACS712 (could make this a variable and auto-adjust it)
int adc_zero1; //Переменная автоматической калибровки

void setup()
<
pinMode(13, OUTPUT);// Пин индикатора
pinMode(12, OUTPUT); // пин звука
pinMode(2, INPUT); // пин входа реле (тумблер)

digitalWrite(13, LOW);
digitalWrite(12, LOW);

tone(12,1500,100); // Звук старта калибровки
delay(180);
tone(12,1500,100);
delay(180);
tone(12,1500,100);

//Serial.begin(9600);
adc_zero1 = determineVQ(currentPin1); //Quiscent output voltage — the average voltage ACS712 shows with no load (0 A)
digitalWrite(13, HIGH);
tone(12,1000,100);

delay(150);
digitalWrite(13, LOW);

void loop() <
// Serial.print(«ACS712@A2_1:»);Serial.print(readCurrent(currentPin1,adc_zero1),3);Serial.println(» mA»);
delay(300);

if(digitalRead(2)==0) < // Если включен тумблер то:
if (readCurrent(currentPin1,adc_zero1)> srab) // Если ток больше указанного порга сработки то:
<
digitalWrite(13, HIGH); // Включить индикатор

>
else // Иначе
<
if(digitalRead(2)==0) < //Если тумблер все еще включен то:
digitalWrite(13, LOW); // Погасить индикатор
tone(12,2000,500); > // и выдать звуковой сигнал
>

Источник

Подключение датчика тока к Ардуино

Подключение датчика тока к Ардуино Уно

Датчик тока Ардуино ACS712 / TA12-100 ► работает на эффекте Холла, используется для защиты от перегрузки. Рассмотрим, как работать с датчиком тока Arduino.

Читайте также:  Печь который дает ток

Датчик тока для Ардуино основан на эффекте Холла, имеет прямую зависимость измеряемой силы тока и выходного сигнала. Модули ACS712 / TA12-100 для измерения тока используются в проектах, где требуется защита от перегрузки, например, при изготовлении зарядных устройств и внешних аккумуляторов (power bank), импульсных источников питания. Рассмотрим, как работать с датчиками тока и Arduino Uno.

Характеристики датчика тока Arduino

ACS713 и ACS712 состоит из линейного датчика на базе эффекта Холла с медным проводником. Ток создает магнитное поле в медном проводнике, которое улавливается датчиком и преобразуется в напряжение. Сила магнитного поля линейно зависит от силы тока. Точность обеспечивается микросхемой на модуле с заводскими настройками. Работает цифровой датчик с постоянным и переменным током.

Принцип работы датчика тока ACS712 с элементом Холла

Принцип работы датчика тока ACS712 с элементом Холла

Технические характеристики ACS712

  • Тип интерфейса: цифровой;
  • Напряжение: постоянное и переменное;
  • Напряжение питания: 5 Вольт;
  • Ток потребления: не более 11 мА;
  • Измерение силы тока: от 5 до 30 Ампер;
  • Чувствительность: от 66 мВ/А до 185 мВ/А;
  • Температура эксплуатации: от -40°C до +85°C;
  • Размер платы модуля: 31 мм на 13 мм.

Датчик TA12-100 Arduino работает на другом принципе. Модуль измеряет напряжение, падающее на транзисторе в 200 Ом, который находится на выходе трансформатора. Датчик TA12-100 преобразует напряжение на резисторе в аналоговый сигнал, применяя закон Ома (I = E / R). Коэффициент трансформатора составляет 1000:1 и, чтобы получить значение тока, следует полученные данные умножить на 1000.

Датчик тока TA12-100 для платы Ардуино

Датчик тока TA12-100 для платы Ардуино

Технические характеристики TA12-100

  • Тип интерфейса: аналоговый;
  • Напряжение: постоянное;
  • Напряжение питания: 5 Вольт;
  • Ток потребления: не более 5 мА;
  • Измерение силы тока: до 5 Ампер;
  • Чувствительность: не известна;
  • Температура эксплуатации: от -55°C до +85°C;
  • Размер платы модуля: 30 мм на 24 мм.

Как подключить к Ардуино датчик ACS712

Для этого занятия нам потребуется:

  • плата Arduino Uno / Arduino Nano / Arduino Mega;
  • датчика тока ACS712 / TA12-100;
  • источник питания 12 Вольт;
  • нагрузка, например, лампа 12V;
  • провода «папа-папа», «папа-мама».

Датчик ACS712 является аналоговым, для подключения потребуется три провода. Два для питания — GND и 5V и один провод для сигнала. Датчик подключается в разрыв цепи между источником питания и нагрузкой. Используется библиотека TroykaCurrent.h (скачать ее можно здесь), которая переводит значения аналогового сигнала в миллиамперы. Соберите схему, установите библиотеку и загрузите скетч.

Схема подключения к Arduino датчика тока ACS712

Схема подключения к Arduino датчика тока ACS712

Счетч для датчика тока Arduino ACS712

Пояснения к коду:

  1. для переменного тока используйте команду sensorCurrent.readCurrentAC() ;
  2. при отрицательных значениях поменяйте местами провода на колодках.

Как подключить к Ардуино датчик TA12-100

Схема подключения к Arduino датчика тока TA12-100

Схема подключения к Arduino датчика тока TA12-100

Данный датчик используется только для измерения переменного тока и является аналоговым. Для подключения к плате вам потребуется два провода (хотя на модуле имеется три контакта) — один провод подключается к GND, а второй к аналоговому входу. Провод, где вы хотите измерить силу тока, должен проходить через катушку модуля. Соберите схему, как на картинке и загрузите следующий скетч.

Источник



Использование датчика тока ACS712. Часть 1 — Теория

Allegro ACS712

Измерение и контроль протекающего тока являются принципиальным требованием для широкого круга приложений, включая схемы защиты от перегрузки по току, зарядные устройства, импульсные источники питания, программируемые источники тока и пр. Один из простейших методов измерения тока –использование резистора с малым сопротивлением, – шунта между нагрузкой и общим проводом, падение напряжения на котором пропорционально протекающему току. Несмотря на то, что данный метод очень прост в реализации, точность измерений оставляет желать лучшего, т.к. сопротивление шунта зависит от температуры, которая не является постоянной. Кроме того, такой метод не позволяет организовать гальваническую развязку между нагрузкой и измерителем тока, что очень важно в приложениях, где нагрузка питается высоким напряжением.

Датчик тока Allegro ACS712

Основные недостатки измерения тока с помощью резистивного шунта:

  • нагрузка не имеет прямой связи с «землей»;
  • нелинейность измерений, обусловленная температурным дрейфом сопротивления резистора;
  • отсутствие гальванической развязки между нагрузкой и схемой измерения.

В статье мы рассмотрим экономичный и прецизионный интегральный датчик тока Allegro ACS712, принцип его работы, основанный на эффекте Холла, характеристики и способ подключения к микроконтроллеру для измерения постоянного тока. Статья разделена на две части: первая посвящена устройству и характеристикам датчика, вторая – интерфейсу с микроконтроллером и работе с датчиком.

Датчик тока ACS712 основан на принципе, открытом в 1879 году Эдвином Холлом (Edwin Hall), и названным его именем. Эффект Холла состоит в следующем: если проводник с током помещен в магнитное поле, то на его краях возникает ЭДС, направленная перпендикулярно, как к направлению тока, так и к направлению магнитного поля. Эффект иллюстрируется Рисунком 2. Через тонкую пластину полупроводникового материала, называемую элементом Холла, протекает ток I. При наличии магнитного поля на движущиеся носители заряда (электроны) действует сила Лоренца, искривляющая траекторию движения электронов, что приводит к перераспределению объемных зарядов в элементе Холла. Вследствие этого на краях пластины, параллельных направлению протекания тока, возникает ЭДС, называемая ЭДС Холла. Эта ЭДС пропорциональна векторному произведению индукции B на плотность тока I и имеет типовое значение порядка нескольких микровольт.

Читайте также:  Головка измерительная тока цифровая

Микросхема ACS712 выпускается в миниатюрном 8-выводном корпусе SOIC для поверхностного монтажа (Рисунок 3). Она состоит из прецизионного линейного датчика Холла с малым напряжением смещения и медного проводника, проходящего у поверхности чипа и выполняющего роль сигнального пути для тока (Рисунок 4). Протекающий через этот проводник ток, создает магнитное поле, воспринимаемое встроенным в кристалл элементом Холла. Сила магнитного поля линейно зависит от проходящего тока. Встроенный формирователь сигнала фильтрует создаваемое чувствительным элементом напряжение и усиливает его до уровня, который может быть измерен с помощью АЦП микроконтроллера.

Микросхема ACS712 в корпусе SOIC

Внутренняя конструкция датчика тока ACS712

На Рисунке 5 показано расположение выводов ACS712 и типовая схема его включения. Выводы 1, 2 и 3,4 образуют проводящий путь для измеряемого тока с внутренним сопротивлением порядка 1.2 мОм, что определяет очень малые потери мощности. Его толщина выбрана такой, чтобы прибор выдерживал силу тока в пять раз превышающую максимально допустимое значение. Контакты силового проводника электрически изолированы от выводов датчика (выводы 5 – 8). Расчетная прочность изоляции составляет 2.1 кВ с.к.з.

В низкочастотных приложениях часто требуется включить на выходе устройства простой RC фильтр, чтобы улучшить отношение сигнал-шум. ACS712 содержит внутренний резистор RF, соединяющий выход встроенного усилителя сигнала со входом выходной буферной схемы (см. Рисунок 6). Один из выводов резистора доступен на выводе 6 микросхемы, к которому подключается внешний конденсатор CF. Следует отметить, что использование конденсатора фильтра приводит к увеличению времени нарастания выходного сигнала датчика и, следовательно, ограничивает полосу пропускания входного сигнала. Максимальная полоса пропускания составляет 80 кГц при емкости фильтрующего конденсатора равной нулю. С ростом емкости CF полоса пропускания уменьшается. Для снижения уровеня шума при номинальных условиях рекомендуется устанавливать конденсатор CF емкостью 1 нФ.

Чувствительность и выходное напряжение ACS712

Выходное напряжение датчика пропорционально току, протекающему через проводящий путь (от выводов 1 и 2 к выводам 3 и 4). Выпускается три варианта токового датчика для разных диапазонов измерения:

  • ±5 А (ACS712-05B),
  • ±20 А (ACS712-20B),
  • ±30 А (ACS712-30A)

Соответствующие уровни чувствительности составляют 185 мВ/А, 100 мА/В и 66 мВ/A. При нулевом токе, протекающем через датчик, выходное напряжение равно половине напряжения питания (Vcc/2). Необходимо заметить, что выходное напряжение при нулевом токе и чувствительность ACS712 пропорциональны напряжению питания. Это особенно полезно при использовании датчика совместно с АЦП.

Точность любого АЦП зависит от стабильности источника опорного напряжения. В большинстве схем на микроконтроллерах в качестве опорного используется напряжение питания. Поэтому при нестабильном напряжении питания измерения не могут быть точными. Однако если опорным напряжением АЦП сделать напряжение питания датчика ACS712, его выходное напряжение будет компенсировать любые ошибки аналого-цифрового преобразования, обусловленные флуктуациями опорного напряжения.

Рассмотрим эту ситуацию на конкретном примере. Допустим, что для опорного напряжения АЦП и питания датчика ACS712 используется общий источник Vcc = 5.0 В. При нулевом токе через датчик его выходное напряжение составит Vcc/2 = 2.5 В. Если АЦП 10-разрядный (0…1023), то преобразованному выходному напряжению датчика будет соответствовать число 512. Теперь предположим, что вследствие дрейфа напряжение источника питания установилось на уровне 4.5 В. Соответственно, на выходе датчика будет 4.5 В/2 = 2.25 В, но результатом преобразования, все равно, будет число 512, так как опорное напряжение АЦП тоже снизилось до 4.5 В. Точно также, и чувствительность датчика снизится в 4.5/5 = 0.9 раз, составив 166.5 мВ/А вместо 185 мВ/А. Как видите, любые колебания опорного напряжения не будут источником ошибок при аналого-цифровом преобразовании выходного напряжения датчика ACS712.

На Рисунке 7 представлены номинальные передаточные характеристики датчика ACS712-05B при напряжении питания 5.0 В. Дрейф выходного напряжения в рабочем диапазоне температур минимален благодаря инновационной технологии стабилизации.

Часть 2 — Подключение датчика к микроконтроллеру и работа с ним

Перевод: Vadim по заказу РадиоЛоцман

Источник