Меню

Что может создать режим по постоянному току

Параметрический поиск по компонентам

  • 21.02.2018 10:40Приемопередатчики интерфейса CAN с единым напряжением питания 3.3 В и защитой от перегрузок на шине до ±36 В
    Устройства также отличаются высокой пропускной способностью, функцией регулировки скорости нарастания выходного сигнала и малопотребляющим режимом ожидания
    Производитель: Exar Группа компонентов: CAN

  • 21.02.2018 10:22Миниатюрный модуль зарядного устройства малой мощности для работы в системах накопления энергии из окружающей среды
    Устройство, выполненное в виде готового решения с минимальным числом внешних компонентов, отличается низкой стоимостью, высокой эффективностью и чрезвычайно компактными размерами
    Производитель: Silvertel Группа компонентов: PoE-модули питания

  • 21.02.2018 10:08Низковольтный модуль драйвера светодиодов Ag201 с программируемой величиной выходного тока
    Благодаря возможности пользовательской установки максимального тока нагрузки, драйвер способен управлять различными типами светодиодов
    Производитель: Silvertel Группа компонентов: Контроллеры Дисплеев

  • 21.02.2018 09:53Коммутаторы Ethernet BCM56980 серий StrataXGS® Tomahawk® 3 с пропускной способностью 12.8 Tбит/с
    Семейство StrataXGS Tomahawk 3 с поддержкой до 32 портов стандарта 400GbE может использоваться для построения высокомасштабируемых распределительных, объединительных и масштабирующих коммутаторов
    Производитель: Broadcom Limited Группа компонентов: Ethernet

  • 21.02.2018 09:44Компактный DC/DC преобразователь в исполнении µModule® с током нагрузки 20 А в 1-канальной и 10 А на канал в 2-канальной конфигурации,
    ИС предназначена для каскадов питания ПЛИС, графических процессоров, специализированных микросхем и системного энергообеспечения
    Производитель: Analog Devices Группа компонентов: Понижающие преобразователи напряжения

  • 28.11.2017 06:05Скидки от 50% на ПО для проектирования печатных плат от Mentor Graphics
    ЗАО «Нанософт», официальный дистрибьютор компании Mentor Graphics, объявляет о старте специального предложения на приобретение программных решений для разработки электроники – PADS
    Производитель: Группа компонентов:
  • 24.09.2016 08:15Компания АВИТОН — официальный представитель Regatron (Швейцария)
    Компания Regatron осуществляет разработку и производство источников питания
    Производитель: Группа компонентов: Источники питания
  • 15.09.2016 08:42Arrow Electronics проводит в жизнь технологии краудфандинга с Indiegogo
    Их деятельность направлена на оптимизацию цепочки краудфандинг — продукт и должна ускорить темпы внедрения инноваций для технологии интернета вещей (IoT)
    Производитель: Arrow Electronics Russia Группа компонентов:
  • 08.08.2016 08:41«Новости Электроники + Светотехника» №01/2016: LED-освещение для промышленных объектов

    Производитель: Группа компонентов:

  • 22.07.2016 08:31Прошивка Serial Extender упрощает работу с модулями MBee
    Два радиомодуля MBee-868 с прошивкой Serial Extender позволяют заменить проводное последовательное соединение между двумя любыми устройствами с интерфейсом UART
    Производитель: Группа компонентов: Модули

  • 29.07.2015 10:24Компания Altera присоединилась с проекту OPNFV с целью привнести преимущества ПЛИС FPGA в технологию виртуализации сетевых функций
    Решения на базе ПЛИС FPGA и Систем-на-Кристалле уже ускоряют работу серверов дата-центров в области предоставления поисковых сервисов и свёрточных нейронных сетей
    Производитель: Altera Группа компонентов: FPGA
  • 29.07.2015 10:14Пример разработки хранилища данных на базе ПЛИС FPGA удваивает срок службы NAND FLASH памяти
    Архитектура ПЛИС FPGA со встроенным процессорным ядром предлагает инновационный метод создания устройств хранения данных для облачных приложений и высокопроизводительных вычислительных систем
    Производитель: Altera Группа компонентов: SoC FPGA
  • 08.07.2015 13:41Компания Pentair предлагает новые трехмерные чертежи и услуги для конструкторов на портале Traceparts
    Чертежи Schroff на портале Traceparts
    Производитель: Schroff Группа компонентов:
  • 13.04.2015 14:37Cypress Semiconductor: CySmart™ — приложения для устройств Bluetooth® с низким энергопотрбелением (BLE)

    Производитель: Cypress Группа компонентов: Bluetooth

  • 28.01.2015 09:43Audi выбрала Системы-на-Кристалле компании Altera для применения в автомобилях с функцией «Автопилот»
    Altera и TTTech Deliver Industry, лидер в области разработки продвинутых систем помощи водителю (ADAS), приступили к разработке систем управления автопилотируемых автомобилей для компании Audi
    Производитель: Altera Группа компонентов: Программируемая Логика

Источник

Чем отличаются и где используются постоянный и переменный ток

В современном мире каждый человек с детства сталкивается с электричеством. Первые упоминания об этом природном явлении относятся к временам философов Аристотеля и Фалеса, которые были заинтригованы удивительными и загадочными свойствами электрического тока. Но лишь в 17 веке великие ученые умы начали череду открытий, касающихся электрической энергии, продолжающихся по сей день.

Открытие электрического тока и создание Майклом Фарадеем в 1831 г. первого в мире генератора кардинально изменило жизнь человека. Мы привыкли, что нашу жизнь облегчают приборы, работающие с использованием электрической энергии, но до сих пор у большинства людей нет понимания этого важного явления. Для начала, чтобы понять основные принципы электричества, необходимо изучить два основных определения: электрический ток и напряжение.

Чем отличаются и где используются постоянный и переменный ток

Что такое электрический ток и напряжение

Электрический ток – это упорядоченное движение заряженных частиц (носителей электрического заряда). Носителями электрического тока являются электроны (в металлах и газах), катионы и анионы (в электролитах), дырки при электронно-дырочной проводимости. Данное явление проявляется созданием магнитного поля, изменением химического состава или нагреванием проводников. Основными характеристиками тока являются:

  • сила тока, определяемая по закону Ома и измеряемая в Амперах (А), в формулах обозначается буквой I;
  • мощность, согласно закону Джоуля-Ленца, измеряемая в ваттах (Вт), обозначается буквой P;
  • частота, измеряемая в герцах (Гц).

Электрический ток, как носитель энергии используют для получения механической энергии с помощью электродвигателей, для получения тепловой энергии в отопительных приборах, электросварке и нагревателях, возбуждения электромагнитных волн различной частоты, создания магнитного поля в электромагнитах и для получения световой энергии в осветительных приборах и различного рода лампах.

Напряжение – это работа, совершаемая электрическим полем для перемещения заряда в 1 кулон (Кл) из одной точки проводника в другую. Исходя из данного определения, все-таки сложно осознать, что же такое напряжение.

Чтобы заряженные частицы перемещались от одного полюса к другому, необходимо создать между этими полюсами разность потенциалов (именно она и именуется напряжением). Единицей измерения напряжения является вольт (В).

Чем отличаются и где используются постоянный и переменный ток

Для окончательного понимания определения электрического тока и напряжения, можно привести интересную аналогию: представьте, что электрический заряд — это вода, тогда давление воды в столбе – это и есть напряжение, а скорость потока воды в трубе – это сила электрического тока. Чем выше напряжение, тем больше сила электрического тока.

Что такое переменный ток

Если менять полярность потенциалов, то направление протекания электрического тока меняется. Именно такой ток и называется переменным. Количество изменений направления за определенный промежуток времени называется частотой и измеряется, как уже было сказано выше, в герцах (Гц). Например, в стандартной электрической сети в нашей стране частота равна 50 Гц, то есть направление движения тока за секунду меняется 50 раз.

Что такое постоянный ток

Когда упорядоченное движение заряженных частиц имеет всегда только одно направление, то такой ток именуется постоянным. Постоянный ток возникает в сети постоянного напряжения, когда полярность зарядов с одной и другой стороны постоянна во времени. Его очень часто используют в различных электронных устройствах и технике, когда не требуется передача энергии на большое расстояние.

Источники электрического тока

Источником электрического тока обычно называется прибор или устройство, с помощью которого в цепи можно создать электрический ток. Такие устройства могут создавать как переменный ток, так и постоянный. По способу создания электрического тока они подразделяются на механические, световые, тепловые и химические.

Механические источники электрического тока преобразуют механическую энергию в электрическую. Таким оборудованием являются различного рода генераторы, которые за счет вращения электромагнита вокруг катушки асинхронных двигателей вырабатывают переменный электрический ток.

Световые источники преобразуют энергию фотонов (энергию света) в электрическую энергию. В них используется свойство полупроводников при воздействии на них светового потока выдавать напряжение. К такому оборудованию можно отнести солнечные батареи.

Тепловые – преобразуют энергию тепла в электричество за счет разности температур двух пар контактирующих полупроводников – термопар. Величина тока в таких устройствах напрямую связана с разностью температур: чем больше разница – тем больше сила тока. Такие источники применяются, например, в геотермальных электростанциях.

Химический источник тока производит электричество в результате химических реакций. Например, к таким устройствам можно отнести различного рода гальванические батареи и аккумуляторы. Источники тока на основе гальванических элементов обычно применяются в автономных устройствах, автомобилях, технике и являются источниками постоянного тока.

Преобразование переменного тока в постоянный

Электрические устройства в мире используют постоянный и переменный ток. Поэтому возникает потребность в том, чтобы преобразовывать один ток в другой или наоборот.

Чем отличаются и где используются постоянный и переменный ток

Из переменного тока можно получить постоянный ток с помощью диодного моста или, как его еще называют, «выпрямителя». Основной частью выпрямителя является полупроводниковый диод, который проводит электрический ток только в одном направлении. После этого диода ток не изменяет своего направления, но появляются пульсации, которые устраняют при помощи конденсаторов и других фильтров. Выпрямители бывают в механическом, электровакуумном или полупроводниковом исполнении.

В зависимости от качества изготовления такого устройства, пульсации тока на выходе будут иметь разное значение, как правило, чем дороже и качественнее сделан прибор – тем меньше пульсаций и чище ток. Примером таких устройств являются блоки питания различных приборов и зарядные устройства, выпрямители электросиловых установок в различных видах транспорта, сварочные аппараты постоянного тока и другие.

Для того, чтобы преобразовать постоянный ток в переменный используются инверторы. Такие приборы генерируют переменное напряжение с синусоидой. Существует несколько видов таких аппаратов: инверторы с электродвигателями, релейные и электронные. Все они отличаются друг от друга по качеству выдаваемого переменного тока, стоимости и размерам. В качестве примера такого устройства можно привести блоки бесперебойного питания, инверторы в автомобилях или, например, в солнечных электростанциях.

Где используется и в чём преимущества переменного и постоянного тока

Для выполнения различных задач может потребоваться использование как переменного тока, так и постоянного. У каждого вида тока есть свои недостатки и достоинства.

Переменный ток чаще всего используется тогда, когда присутствует необходимость передачи тока на большие расстояния. Такой ток передавать целесообразнее с точки зрения возможных потерь и стоимости оборудования. Именно поэтому в большинстве электроприборов и механизмов используется только этот вид тока.

Жилые дома и предприятия, инфраструктурные и транспортные объекты находятся на расстоянии от электростанций, поэтому все электрические сети — переменного тока. Такие сети питают все бытовые приборы, аппаратуру на производствах, локомотивы поездов. Приборов, работающих на переменном токе невероятное количество и намного проще описать те устройства, в которых используется постоянный ток.

Постоянный ток используется в автономных системах, таких, например, как бортовые системы автомобилей, летательных аппаратов, морских судов или электропоездов. Он широко используется в питании микросхем различной электроники, в средствах связи и прочей технике, где требуется минимизировать количество помех и пульсаций или исключить их полностью. В ряде случае, такой ток используется в электросварочных работах с помощью инверторов. Существуют даже железнодорожные локомотивы, которые работают от систем постоянного тока. В медицине такой ток используется для введения лекарств в организм с помощью электрофореза, а в научных целях для разделения различных веществ (электрофорез белков и прочее).

Обозначения на электроприборах и схемах

Часто возникает потребность в том, чтобы определить на каком токе работает устройство. Ведь подключение устройства, работающего на постоянном токе в электрическую сеть переменного тока, неминуемо приведет к неприятным последствиям: повреждению прибора, возгоранию, электрическому удару. Для этого в мире существуют общепринятые условные обозначения для таких систем и даже цветовая маркировка проводов.

Чем отличаются и где используются постоянный и переменный ток

Условно, на электроприборах, работающих на постоянном токе указывается одна черта, две сплошных черты или сплошная черта вместе с пунктирной, расположенные друг под другом. Также такой ток маркируется обозначением латинскими буквами DC. Электрическая изоляция проводов в системах постоянного тока для положительного провода окрашена в красный цвет, отрицательного в синий или черный цвет.

На электрических аппаратах и машинах переменный ток обозначается английской аббревиатурой AC или волнистой линией. На схемах и в описании устройств его также обозначают двумя линиями: сплошной и волнистой, расположенных друг под другом. Проводники в большинстве случаев обозначаются следующим образом: фаза – коричневым или черным цветом, ноль – синим, а заземление желто-зеленым.

Почему переменный ток используется чаще

Выше мы уже говорили о том, почему переменный ток в настоящее время используется чаще, чем постоянный. И все же, давайте рассмотрим этот вопрос подробнее.

Споры о том, какой же ток в использовании лучше идет со времен открытий в области электричества. Существует даже такое понятие, как «война токов» — противоборство Томаса Эдисона и Николы Теслы за использование одного из видов тока. Борьба между последователями этих великих ученых просуществовала вплоть до 2007 года, когда город Нью-Йорк перевели на переменный ток с постоянного.

Чем отличаются и где используются постоянный и переменный ток

Самая главная причина, по которой переменный ток используется чаще – это возможность передавать его на большие расстояния с минимальными потерями . Чем больше расстояние между источником тока и конечным потребителем, тем больше сопротивление проводов и тепловые потери на их нагрев.

Для того, чтобы получить максимальную мощность необходимо увеличивать либо толщину проводов (и уменьшать тем самым сопротивление), либо увеличивать напряжение.

В системах переменного тока можно увеличивать напряжение при минимальной толщине проводов тем самым сокращая стоимость электрических линий. Для систем с постоянным током доступных и эффективных способов увеличивать напряжение не существует и поэтому для таких сетей необходимо либо увеличивать толщину проводников, либо строить большое количество мелких электростанций. Оба этих способа являются дорогостоящими и существенно увеличивают стоимость электроэнергии в сравнении с сетями переменного тока.

При помощи электротрансформаторов напряжение переменного тока эффективно (с КПД до 99%) можно изменять в любую сторону от минимальных до максимальных значений, что тоже является одним из важных преимуществ сетей переменного тока. Применение трехфазной системы переменного тока еще больше увеличивает эффективность, а механизмы, например, двигатели, которые работают в электросетях переменного тока намного меньше, дешевле и проще в обслуживании, чем двигатели постоянного тока.

Исходя из всего вышесказанного можно сделать вывод о том, что использование переменного тока выгодно в больших сетях и при передаче электрической энергии на большие расстояния, а для точной и эффективной работы электронных приборов и для автономных устройств целесообразно использовать постоянный ток.

Чем отличаются и где используются постоянный и переменный ток

Как устроен генератор переменного тока — назначение и принцип действия

Что такое активная и реактивная мощность переменного электрического тока?

Чем отличаются и где используются постоянный и переменный ток

Что такое частотный преобразователь, основные виды и какой принцип работы

Чем отличаются и где используются постоянный и переменный ток

Что такое конденсатор, виды конденсаторов и их применение

Чем отличаются и где используются постоянный и переменный ток

Как условно обозначаются элементы на электрических схемах?

Чем отличаются и где используются постоянный и переменный ток

Что такое варистор, основные технические параметры, для чего используется

Источник

Режим работы транзистора по постоянному току

Дата добавления: 2014-11-28 ; просмотров: 3108 ; Нарушение авторских прав

Совокупность постоянных напряжений и токов в схеме усилителя формирует так называемую рабочую точку транзистора. Выбор и задание рабочей точки является важной составляющей проектирования транзисторных схем. В зависимости от типа усилителя и усилительного элемента режим схемы по постоянному току может быть различным. Для линейных усилителей малой и средней мощности важнейшим па­раметром является уровень нелинейных искажений. Как уже бьшо сказано, нелинейность вольтамперных характеристик транзистора слабо проявляется при малых сигналах, однако правильный выбор рабочей точки позволяет минимизировать нелинейные искажения.

Проведем графический анализ работы резисторного усилителя (рис. 9), считая для простоты Rэ = 0. Как в динамическом, так и в статическом режимах все напряжения и токи транзистора оказываются взаимосвязанными. Для выходной цепи можно записать уравнение Кирхгофа

. (9)

Совместно с семейством статических характеристик транзистора

оно образует систему уравнений. Графическое решение этой системы проводится на плоскости коллекторных характеристик (рис. 11). Уравнение (9) на этой плоскости представляет собой прямую (ее называют нагрузочной); она пересекает оси координат в точках Ек и Ек/ Rк. Если при отсутствии сигнала на входе мы выбираем такое значение Еб0, что ток базы будет Iб0 = Iбэ, то рабочая точка А определяет постоянные напряжение между коллектором и эмит-гером Uкэ0 и ток коллектора Iк0.

Рис. 11. Графический анализ режима усиления транзистора

При изменении базового тока под действием сигнала точка пересечения статических характеристик с нагрузочной прямой передвигается по этой прямой около точки А. При этом изменяются ток коллектора iк и напряжение uкэ. Изменения последнего и являются выходным усиленным сигналом.

Знание статических характеристик конкретного транзистора позволяет с помощью графического метода рассчитать усилитель.

Варьируя напряжение источника Еб0, а значит и Iб0, можно изменять положение рабочей точки. Если Еб0 выбрать достаточно большим, точкой покоя может оказаться точка В. Транзистор здесь находится вблизи порога насыщения, его ток велик, а напряжение на нем мало. Увеличение тока базы под действием сигнала выводит рабочую точку в область насыщения, и возникает ограничение тока коллектора и выходного сигнала (рис. 11). Говорят, что происходит верхняя отсечка тока. Если рабочая точка находится в положении С, то, наоборот, при отрицательном приращении сигнала транзистор оказывается запертым, что также приводит к отсечке тока, теперь уже нижней. Отсечки тока следует рассматривать как один из видов нелинейного искажения сигнала в усилителе. Очевидно, что правильный выбор режима по постоянному току соответствует расположению точки покоя в средней части нагрузочной прямой. Следует заметить, что режим с отсечками возникает в любом усилителе при большом уровне входного сигнала, поэтому должны предприниматься специальные меры для исключения такой возможности.

Источник



2.2.3. Режим работы по постоянному току

Режим работы по постоянному току является важнейшей характеристикой усилительного каскада и характеризует его работу при отсутствии в напряжение на входе усилительного каскада переменной составляющей, которая и является усиливаемой величиной.

Режим работы по постоянному току характеризуется положением рабочей точки – точки на нагрузочной характеристике, соответствующей нулевому уровню переменной составляющей входного напряжения.

На рисунке 2.15 мы видим, что нагрузочная линия, как и выходные характеристики транзисто-

ра, находятся с одной стороны от оси U КЭ , следовательно на выходе

усилительного каскада будет сигнал одной полярности, а составля-

ющие противоположной полярности будут утеряны.

Положение рабочей точки опре- деляется величиной и знаком постоянной составляющей входно-

го напряжения напряжения U БЭ0 . Если входное напряжение меняется по закону синуса, то получим следующее выражение:

u = U БЭ0 + U БЭm sin ωt

В зависимости от положения рабочей точки на нагрузочной характеристике различают 3 класса усилителей:

Рис. 2.17. Режимы работы усилителя а ) входной сигнал;

б ) режим А; в ) режим B; г ) режим C;

Класс А (рис. 2.17 б )– режим, при котором напряжение в выходной цепи изменяется в течении всего периода входного сигнала. В этом случае рабочая точка находится посредине участка нагрузочной характеристики, соответствующего линейному участку характеристик транзистора а входной и выходной сигналы являются пульсирующи-

2. Теоретическое введение

ми 3 . Отсюда следует, что при нулевом сигнале на входе (напомним, что входным сигналом для нас является переменная составляющая), напряжение на выходе будет равно U КЭ0 . Отсюда следует, что при нулевом сигнале на входе, напряжение на выходе будет равно U КЭ0 .

Следует обратить внимание на то, что в связи с нелинейностью характеристик транзистора в области низких значений тока коллектора, максимальное амплитудное значение выходного сигнала (U КЭm ) будет несколько меньше U КЭ0 .

Достоинством класса А являются малые нелинейные искажения,

однако КПД каскада η = P (P – выходная мощность, P 0 – мощность,

потребляемая усилителем от источника питания) очень мал – 0, 5.

В основном класс А используется в каскадах предварительного усиления.

Класс B – режим, при котором напряжение в выходной цепи изменяется в течении приблизительно половины периода входного сигнала (рис. 2.17 в ), т.е. входной сигнал является переменным 4 и происходит потеря половины его периода.

При анализе режимов работы усилителей удобно использовать угол отсечки θ – половина угла, соответствующего участку периода, на котором не происходит изменение выходного сигнала. Для каскада, работающего в идеальном режиме В, величина угла отсечки равна π/2. В этом случае величина постоянной составляющей равна 0, а КПД может достигать величины η = 0, 8. Нелинейные искажения имеют сравнительно небольшую величину и в основном сконцентрированы в области нулевого значения входного и выходного сигналов. Это связано с нелинейном характером начальных участков входных и выходных характеристик транзистора.

Класс B получил широкое распространение в двухтактных усилительных каскадах 5 , однако идеальный класс В (θ = π/2) применяется редко, наибольшее распространение получил промежуточный

3 Пульсирующий сигнал меняется только по величине, знак остаётся постоянным, т.е. это сигнал одной полярности.

4 Переменный сигнал меняется как по величине, так и по знаку 5 В двухтактном усилительном каскаде имеется два усилительных элемента, каждый из

которых усиливает напряжение одной из полярностей, они позволяют обеспечить изменение выходного напряжения в течении всего периода входного. Недостатком подобных каскадов является невозможность найти два абсолютно одинаковых транзистора, что приводит к искажениям в местах соединения разнополярных полупериодов на выходе усилителя

2.2. Усилительной каскад с общим эмиттером (ОЭ)

Класс АВ 6 , при котором угол отсечки несколько больше π/2, то есть к входному напряжению прибавляется постоянная составляющая, величина которой составляет 5 . . . 15% от максимального входного напряжения. Наличие постоянной составляющей такой величины позволят выйти из нелинейного участка в начале входных и выходных характеристик транзистора.

Класс С – режим, при котором напряжение в выходной цепи изменяется в течении времени значительно меньшего половины периода входного сигнала (рис. 2.17 г ), т.е. 0 Класс D , который характеризуется наличием только двух уровней выходного напряжения – максимальное и нулевое, то есть транзистор работает в ключевом режиме – либо полностью открыт, либо полностью закрыт. Подобные усилители широко применяются в импульсной технике, отличаются очень высоким КПД и малыми нелинейными искажениям. Сигналы, которые усиливаются ими, используют широтноимпульсную модуляцию (ШИМ), при которой информация кодируется

Источник

Читайте также:  Фарфоровая покрышка трансформатора тока