Меню

Чем отличается пускатель постоянного тока от переменного тока

Чем отличается контактор от пускателя?

Чем отличается контактор от пускателяДаже самые опытные наладчики электрооборудования и просто специалисты с высшим образованием далеко не всегда могут объяснить принципиальную разницу между электромагнитным пускателем и контактором переменного тока. Попробуем самостоятельно разобраться в этом вопросе.

Общим между контактором и пускателем является то, что оба они предназначены для коммутации цепей, как правило, силовых. Поэтому контакторы и пускатели часто используют для запуска двигателей переменного тока, а также для ввода/вывода ступеней сопротивлений, если этот пуск реостатный.

И контактор, и пускатель кроме силовых контактов обязательно имеет в своем составе хотя бы одну (а чаще всего – далеко не одну) пару контактов для цепи управления: нормально замкнутую или нормально разомкнутую. Этим контакторы и пускатели схожи. А чем же они, все-таки, отличаются?

По номенклатуре многих торговых организаций электромагнитные пускатели проходят как «малогабаритные контакторы переменного тока». Так, может быть, ответ на вопрос кроется в компактности пускателя? Ведь действительно, стоит только взять в руки контактор и пускатель с одинаковой номинальной токовой нагрузкой, и разница в их габаритах станет заметна вашим не то, что глазам, – рукам и пальцам.

Скромный трехполюсный контактор на 100 ампер – штука довольно увесистая, ею, как говорят, и зашибить можно. А стоамперный пускатель – это, конечно, не пушинка, но удержать его на ладони одной руки вполне реально. К тому же, надо отметить, что слаботочных контакторов, например, на 10 ампер, просто не выпускают. Поэтому для коммутации слабых цепей приходится использовать исключительно пускатели, которые отличаются совсем уж небольшими размерами. Так что габариты – это действительно одно из различий между контакторами и пускателями.

Электромагнитный контактор КТ6043 ОАО Завод

Рис. 1. Электромагнитный контактор КТ6043 ОАО Завод «Электроконтактор»

Второе различие состоит в конструкции. Любой контактор имеет в своем составе мощные пары силовых контактов, оснащенные дугогасительными камерами. Собственного корпуса контактор не имеет и монтируется в специальных помещениях, закрывающихся на ключ во избежание доступа посторонних лиц и воздействия атмосферных осадков.

А вот силовые контакты пускателя всегда укрыты под пластиковым корпусом, но громоздких дугогасительных камер у них нет. Это приводит к тому, что в составе мощных цепей с частыми коммутациями пускатели не монтируют из опасения, что контакты их менее защищены от часто возникающей электрической дуги, чем у контакторов переменного тока.

Зато пускатель имеет более высокую степень защиты электрооборудования, особенно если он оборудован дополнительным металлическим кожухом. Тогда пускатель можно устанавливать хоть под открытым небом, чего никогда нельзя сделать с контактором.

Третье различие между контактором переменного тока и пускателем заключается в их назначении. Хотя пускатели часто применяют для подачи электропитания на обогреватели, электромагнитные катушки, различные мощные светильники и прочие электроприемники, основное их назначение – запуск асинхронных трехфазных двигателей переменного тока.

Поэтому любой пускатель имеет три пары силовых контактов, а его контакты управления предназначены для удержания пускателя во включенном состоянии и для сборки сложных цепей управления, предусматривающих, например, реверсивный пуск.

Электромагнитные пускатели ПМЛ

Рис. 2. Электромагнитные пускатели ПМЛ

В то же время контактор предназначен для коммутации абсолютно любой силовой цепи переменного тока. Поэтому и количество полюсов, то есть пар силовых контактов, у контактора бывает разным – от двух до четырех.

Вот по этим трем различиям силовые электромагнитные коммутационные устройства переменного тока и были подразделены на контакторы и пускатели.

Источник

Для чего нужен магнитный пускатель и как его подключить

Магнитный пускатель, или электромагнитный контактор, это коммутационный аппарат, коммутирующий мощные потоки постоянного и переменного тока. Его роль — систематическое включение и отключение источников электричества.

magnitniy-puskatel

Назначение и устройство

Магнитные пускатели встраиваются в электрические цепи для удаленного пуска, остановки и обеспечения защиты электрооборудования, электродвигателей. В основе работы лежит использование принципа действия электромагнитной индукции.

Основой конструкции являются тепловое реле и контактор, объединенные в одно устройство. Такое устройство способно работать в том числе и в трехфазной сети.

Подобные устройства постепенно вытесняются с рынка контакторами. Они по своим конструктивным и техническим характеристикам ничем не отличаются от пускателей, и различить их возможно только по названию.

Между собой они отличаются напряжением питания магнитной катушки. Оно бывает 24, 36, 42, 110, 220, 380 Вт переменного тока. Устройства выпускают с катушкой для постоянного тока. Их использование в сети переменного тока тоже возможно, для чего нужен выпрямитель.

Конструкцию пускателя принято делить на верхнюю и нижнюю часть. В верхней части находится подвижная система контактов, совмещенная с дугогасительной камерой. Также здесь размещается подвижная часть электромагнита, механически соединенная с силовыми контактами. Все это составляет подвижную контактную схему.

В нижней части находится катушка, вторая половина электромагнита и возвратная пружина. Возвратная пружина возвращает верхнюю половину в первоначальное состояние после обесточивания катушки. Так происходит разрыв контактов пускателя.

  1. Нормально замкнутые. Контакты замкнуты, и питание подается постоянно, отключение происходит только после срабатывания пускателя.
  2. Нормально разомкнутые. Контакты замкнуты, и питание подается, пока работает пускатель.

Наиболее часто встречается второй вариант.

Принцип работы

Принцип действия магнитного пускателя основывается на явлении электромагнитной индукции. Если через катушку ток не проходит, значит, магнитное поле в ней отсутствует. Это приводит к тому, что пружина механически отталкивает подвижные контакты. Как только питание катушки восстановлено, в ней возникают магнитные потоки, сжимающие пружину и притягивающие якорь к неподвижно закрепленной части магнитопровода.

Так как работает пускатель только под воздействием электромагнитной индукции, размыкание контактов происходит при перебоях с электричеством и при снижении напряжения в сети больше чем на 60% от номинального показателя. Когда напряжение вновь восстановлено, контактор не включается самостоятельно. Для его активации потребуется нажатие кнопки «Пуск».

Читайте также:  Ток в металлах создается движением только электронов только положительных ионов

При необходимости изменения направления вращения асинхронного двигателя применяются реверсивные устройства. Реверс происходит благодаря 2 контакторам, активирующимся по очереди. При одномоментном включении контакторов происходит короткое замыкание. Для исключения таких ситуаций в конструкцию входит специальная блокировка.

Разновидности и типы

Пускатели, изготавливаемые по российским стандартам, разделяют на 7 групп в зависимости от номинальной нагрузки. Нулевая группа выдерживает нагрузку в 6,3 A, седьмая группа — 160 A.

Об этом необходимо помнить при выборе магнитных пускателей.

Классификация зарубежных аналогов может отличаться от принятой в России.

Необходимо руководствоваться типом исполнения:

  1. Открытые. Подходят для установки в закрытых шкафах или местах, изолированных от пыли.
  2. Закрытые. Устанавливаются отдельно, в помещениях без пыли.
  3. Пылебрызгонепроницаемые. Возможна установка в любом месте, в том числе и вне помещений. Основное условие — установка козырька, защищающего от солнечных лучей и дождя.

kontaktoryi-i-magnitnyie-puskateli-etal

По типам пускатель электромагнитный можно подобрать по следующим параметрам:

  1. Стандартные версии, в которых подается напряжение на пускатель с дальнейшим притягиванием сердечника и активацией контактов. В этом случае в зависимости от того, нормально замкнутый или нормально разомкнутый это пускатель, происходит включение либо отключение электрооборудования.
  2. Реверсивные модификации. Такое устройство представляет собой реверс с электромагнитами. Такая конструкция позволяет исключить одновременное включение 2 устройств.

В маркировке магнитного пускателя зашифрованы его технические характеристики. Обозначение размещено на корпусе и может содержать следующие значения:

  1. Серия прибора.
  2. Номинальный ток, обозначение которого вписано диапазоном значений.
  3. Наличие и конструкция теплового реле. Существует 7 степеней.
  4. Степень защиты и кнопки управления. Всего существует 6 позиций.
  5. Наличие дополнительных контактов и их разновидности.
  6. Соответствие креплений стандартным монтажным рамкам.
  7. Климатическое соответствие.
  8. Варианты размещения
  9. Износостойкость.

Существует несколько вариантов установки магнитных контакторов в системах управления, начиная с самого простого управления электродвигателями и заканчивая установкой с удержанием кнопки контактов, или реверсов.

Схема подключения на 220 в

Любая электрическая схема подключения содержит 2 цепи, в том числе и для однофазной сети. Первая — силовая, через которую осуществляется подача питания. Вторая — сигнальная. С ее помощью происходит контроль работы устройства.

Соединенные контактор, тепловое реле и кнопки управления составляют единое устройство, которое отмечается как магнитный пускатель на схеме. Он обеспечивает надлежащее функционирование и безопасность электродвигателей при различных режимах функционирования.

Контакты для подключения питания устройства размещаются в верхней части корпуса. Они обозначаются A1 и A2. Так, для 220 В катушки подается 220 В напряжения. Порядок подключения «ноля» и «фазы» роли не играет.

На нижней части корпуса находятся несколько контактов с отметками L1, L2, L3. К ним подключается источник питания для нагрузки. Постоянный он или переменный — не важно, главное — ограничение в 220 В. Снимается напряжение с контактов T1, T2, T3.

magnitniy-puskatel shema

Схема подключения на 380 в

Стандартная схема используется в тех случаях, когда необходим запуск двигателя. Управление осуществляется при помощи кнопок «Пуск» и «Стоп». Вместо двигателя через магнитные пускатели может быть подключена любая нагрузка.

В случае питания от трехфазной сети в силовую часть входит:

  1. Трехполюсный автоматический выключатель.
  2. Три пары силовых контактов.
  3. Трехфазный асинхронный электродвигатель.

Цепь управления питается от первой фазы. В нее же включены кнопки «Пуск» и «Стоп», катушка и подключенный параллельно кнопке «Пуск» вспомогательный контакт.

При нажатии на кнопку «Пуск» на катушку попадает первая фаза. После этого пускатель срабатывает, и все контакты замыкаются. Напряжение проходит на нижние силовые контакты и по ним поступает на электродвигатель.

Схема может отличаться в зависимости от номинального напряжения катушки и напряжения используемой питающей сети.

Подключение через кнопочный пост

Схема, подключающая магнитные пускатели через кнопочный пост, предусматривает использование аналогового переходника. Блоки контактов бывают на 3 или 4 выхода. При присоединении необходимо определить направленность катода. Затем через переключатель подсоединяют контакты. Для этого используют триггер двухканального вида.

Если подключать устройство с автоматическими переключателями, то для них используют электронный регулятор. Блоки при этом могут находиться на контроллере. Чаще всего встречаются устройства с широкополосными разъемами.

Источник

Разница между контакторами переменного и постоянного тока

Контакторы переменного тока (AC) и постоянного тока (DC) встречаются во многих промышленных двигателях, в том числе во многих автомобилях. Разные контакторы выполняют одно и то же, но делают это по-разному, начиная с того, как они построены.

строительство

По данным Electrotechnik.net, в реле постоянного тока используется диод свободного хода, который разряжает электромагнитную силу, которая накапливается в индуктивности при обесточивании катушки. Контакторы переменного тока не используют конструкцию с диодом свободного хода; вместо этого они используют ламинирующие сердечники для предотвращения потерь тепла и затенения катушек для обеспечения эффективного прохождения электричества через устройство.

Различия

Из-за затенения катушек переменного тока устройство может быть размещено в любом месте, если у него есть место для работы. Для работы контактора постоянного тока требуется воздух, поэтому для правильной работы устройства вокруг него должно быть множество щелей.

настройка

В то время как контактор переменного тока считается более надежным и более дешевым продуктом, контактор постоянного тока спроектирован таким образом, чтобы обеспечивать индивидуальную скорость и крутящий момент. Это идеально подходит для проектов, которые не следуют уже существующему шаблону, таких как создание руки робота с нуля.

Источник



Контакторы постоянного и переменного тока

ОБЩИЕ СВЕДЕНИЯ

Контактор представляет собой электрический аппарат, предназначенный для коммутации силовых электрических цепей. Замыкание или размыкание контактов контактора осуществляется чаще всего под воздействием электромагнитного привода. Контакторы постоянного тока предназначены для коммутации цепей постоянного тока и, как правило, приводятся в действие электромагнитом постоянного тока. Контакторы переменного тока предназначены для коммутации цепей переменного тока. Электромагниты этих контакторов могут быть как переменного, так и постоянного тока. В настоящее время частота коммутаций в схемах электропривода достигает 3600 в час. Этот режим работы является наиболее тяжелым. При каждом включении и отключении происходит износ контактов. Поэтому принимаются меры к сокращению длительности горения дуги при отключении и к устранению вибраций контактов. Общие технические требования к контакторам и условия их работы регламентированы ГОСТ 11206—77. Ниже описываются категории применения современных контакторов и приводятся параметры коммутируемых ими цепей в зависимости от характера нагрузки. а) Контакторы переменного тока АС-1 — активная или малоиндуктивная нагрузка. АС-2 — пуск электродвигателей с фазным ротором, торможение противовключением. АС-3 — пуск электродвигателей с короткозамкнутым ротором. Отключение вращающихся двигателей при номинальной нагрузке. АС-4 — пуск электродвигателей с короткозамкнутым ротором. Отключение неподвижных или медленно вращающихся электродвигателей. Торможение противовключением. б) Контакторы постоянного тока ДС-1 — активная или малоиндуктивная нагрузка. ДС-2 — пуск электродвигателей постоянного тока с параллельным возбуждением и их отключение при номинальной частоте вращения. ДС-3 — пуск электродвигателей с параллельным возбуждением и их отключение при неподвижном состоянии или медленном вращении ротора. ДС-4 — пуск электродвигателей с последовательным возбуждением и их отключение при номинальной частоте вращения. ДС-5 — пуск электродвигателей с последовательным возбуждением, отключение неподвижных или медленно вращающихся двигателей, торможение противотоком. * Для контакторов существует еще режим редких коммутаций, характеризуемый более тяжелыми условиями, чем при нормальных коммутациях [ток включения достигает Ю/ном]. Такие режимы возникают довольно редко (например при КЗ). Основными техническими данными контакторов являются номинальный ток главных контактов, предельный отключаемый ток, номинальное напряжение коммутируемой цепи, механическая и коммутационная износостойкость, допустимое число включений в час, собственное время включения и отключения. Способность контактора, как и любого коммутационного аппарата, обеспечить работу при большом числе операций характеризуется износостойкостью. Различают механическую и коммутационную износостойкость. Механическая износостойкость определяется числом циклов включение-отключение контактора без ремонта и замены его узлов и деталей. Ток в цепи при этом равен нулю. Механическая износостойкость современных контакторов составляет (Ю-г-20) • 106 операций. Коммутационная износостойкость определяется таким числом включений и отключений цепи с током, после которого требуется замена контактов. Современные контакторы должны иметь коммутационную износостойкость порядка (2-^3)-!06 операций (некоторые выпускаемые в настоящее время контакторы имеют коммутационную износостойкость 106 операций и менее). Собственное время включения состоит из времени нарастания потока в электромагните контактора до значения потока трогания и времени движения якоря. Большая часть этого времени тратится на нарастание магнитного потока. Для контакторов постоянного тока с номинальным током 100 А собственное время включения составляет 0,14 с, для контакторов с током 630 А оно увеличивается до 0,37 с. Собственное время отключения-—время с момента обесточивания электромагнита контактора до момента размыкания его контактов. Оно определяется временем спада потока от установившегося значения до потока отпускания. Временем с начала движения якоря до момента размыкания контактов можно пренебречь. В контакторах постоянного тока с номинальным током 100 А собственное время отключения составляет 0,07, в контакторах с номинальным током 630 А —0,23 с. Номинальный ток контактора /ном представляет собой ток, который можно пропускать по замкнутым главным контактам в течение 8 ч без коммутаций, причем превышение температуры различных частей контактора не должно быть больше допустимого (прерывисто-продолжительный режим работы). Номинальный рабочий ток контактора Люм.р — это допустимый ток через его замкнутые главные контакты в конкретных условиях применения. Так, например, номинальный рабочий ток /110м,р контактора для коммутации асинхронных двигателей с короткозамкнутым ротором выбирается из условий включения шестикратного пускового тока двигателя. Номинальным напряжением называется наибольшее напряжение коммутируемой цепи, для работы при котором предназначен контактор. Коммутационная износостойкость главных контактов для категорий ДС-2, ДС-4 и АС-3 в режиме нормальных коммутаций должна быть не менее 0,1, а для категорий ДС-3 и АС-4 не менее 0,02 механической износостойкости. Вспомогательные контакты должны коммутировать цепи электромагнитов переменного тока, у которых пусковой ток может во много раз превышать установившийся. Характеристика категорий применения для этих контактов приведена в табл. 8.3. Контактор имеет следующие основные узлы: контактную систему, дугогасительное устройство, электромагнит и систему вспомогательных контактов. При подаче напряжения на обмотку электромагнита контактора его якорь притягивается. Подвижный контакт, связанный с якорем электромагнита, замыкает или размыкает главную цепь. Дугогасительное устройство обеспечивает быстрое гашение дуги, благодаря чему достигается малый износ контактов. Система вспомогательных слаботочных контактов служит для согласования работы контактора с другими устройствами.

Читайте также:  Движение переменного тока в проводник

КОНТАКТОРЫ ПОСТОЯННОГО ТОКА
а) Контактная система. С целью уменьшения износа для контакторов применяются преимущественно линейные перекатывающиеся контакты. Для предотвращения вибраций контактов контактная пружина создает предварительное нажатие, составляющее примерно 50 % конечного контактного нажатия. Большое влияние на вибрацию оказывает жесткость крепления неподвижного контакта и стойкость к вибрациям всего контактора в целом. На рис. 8.1 показана конструкция контактора серии КПВ-600. Неподвижный контакт /• жестко прикреплен к скобе 2, к которой присоединен один конец дугогасительной катушки 3. Второй конец дугогасительной катушки с выводом 4 закреплен в пластмассовом основании 5. Последнее крепится к прочной стальной скобе 6. Подвижный контакт 7 выполнен в виде толстой пластины, нижний конец которой может поворачиваться относительно точки опоры 8. Благодаря этому контакт 7 может перекатываться и скользить по поверхности неподвижного контакта /. Вывод 9 соединяется с подвижным контактом 7 гибкой связью 10. Контактное нажатие создается пружиной 12.

Рис. 8.1. Контактор постоянного тока серии КПВ-600.
При износе контакт / заменяется новым, а пластина подвижного контакта переворачивается на 180° и используется ее неповрежденная сторона. Для уменьшения оплавления контактов дугой при токах более 50 А контактор имеет дугогасительные контакты — рога 2, 11. Под действием магнитного поля опорные точки дуги 14 быстро перемещаются на скобу 2, соединенную с неподвижным контактом /, и на защитный рог подвижного контакта 11. Возврат якоря в начальное положение (после отключения электромагнита) производится пружиной 13. В контакторах КПВ-600, как и во многих других, вывод подвижного контакта электрически соединен с корпусом. Как при включенном, так и при отключенном состоянии контактора его конструктивные детали могут находиться под напряжением, и соприкосновение с ними опасно для жизни. Контакторы серии КПВ имеют два исполнения контактной системы: с замыкающим и размыкающим главными контактами. В первом исполнении замыкание главных контактов производится при подаче напряжения на обмотку электромагнита, а размыкание — под действием возвратной пружины. Во втором исполнении контакты замыкаются под действием пружины, а размыкание контактов происходит при подаче напряжения на обмотку электромагнита. В обесточенном состоянии обмотки контакты замкнуты. При номинальном токе контактор находится во включенном состоянии не более 8 ч. По истечении этого времени его необходимо несколько раз отключить и включить для зачистки контактов от оксида меди. После этого аппарат снова пригоден для работы. Номинальный ток контакторов, расположенных в шкафах, понижается примерно на 10 % из-за ухудшения охлаждения. В продолжительном режиме работы, когда длительность нахождения во включенном состоянии превышает 8 ч, допустимый ток контактора снижается примерно на 20%. В таком режиме из-за окисления меди контактов растет их переходное сопротивление, что может привести к повышению температуры выше допустимой. В контакторах с небольшим числом включений или предназначенных для длительного нахождения во включенном состоянии, на рабочую поверхность контактов напаивается серебряная пластина. Это позволяет сохранить допустимый ток контактора, равный номинальному, и в режиме продолжительного включения. Если контактор наряду с режимом продолжительного включения используется в режиме повторно-кратковременного включения, применение серебряных .накладок нецелесообразно из-за малой механической прочности серебра. Необходимо отметить, что если при отключении в повторно-кратковременном режиме длительно горит дуга (отключается нагрузка с большой постоянной времени Т =

Читайте также:  Электрический ток это хаотическое движение зарядов упорядоченное движение зарядов тест

L/R), то температура контактов может резко увеличиться за счет их нагрева дугой. В этом случае нагрев контактов в продолжительном режиме работы может быть меньше, чем в повторно-кратковременном режиме. Как правило, контактная система имеет один полюс.


Рис. 8.3. Характеристика противодействующих усилий контактора КПВ-600 .
Рис. 8.2. Схема включения главных контактов контактора КТПВ-600 для реверса асинхронного двигателя.
Для реверса асинхронных двигателей при большой частоте включений в час (до 1200) применяются контакторы типа КТПВ-600 со сдвоенными полюсами. В этих контакторах подвижные контакты изолированы от корпуса, что делает более безопасным обслуживание аппарата. На рис. 8.2 показана схема включения главных контактов контактора КТПВ-600 (обведены штриховой линией) для реверса асинхронного двигателя. Для пуска, останова и реверса двигателя используются три контактора такого же типа. При неполадках и отказе одного контактора подается напряжение только на одну фазу двигателя, что не приводит к его включению. В схеме с однополюсными контакторами отказ одного контактора привел бы к возникновению тяжелого режима двухфазного питания двигателя. Контакторы с двухполюсной контактной системой очень удобны для закорачивания сопротивлений в цепи ротора асинхронного двигателя. В контакторах типа КМВ-521, предназначенных для включения и отключения мощных электромагнитов постоянного тока масляных выключателей, также применяется двухполюсная контактная система. Такая система, включенная в оба провода сети постоянного тока, обеспечивает надежное отключение индуктивной нагрузки, так как в отключаемую цепь вводятся два дуговых промежутка. б) Дугогасительное устройство. В контакторах постоянного тока наибольшее распространение получили устройства с электромагнитным дутьем с катушкой тока 3 и полюсами 15 (см. рис. 8.1). Следует отметить, что при отключении малых постоянных токов (5—10 А) и большой индуктивности нагрузки наблюдается длительное горение дуги. По опытным данным ток, надежно отключаемый контактором, составляет 20—25 % номинального тока. Современные контакторы серии МК обеспечивают отключение тока до 1 А при постоянной времени цепи до 100 мс. в) Электромагнит. В контакторах постоянного тока (рис. 8.1) распространены электромагниты клапанного типа 20. С целью повышения механической износостойкости применяется вращение якоря 17 на призме 19. Компоновка электромагнита и контактной системы, показанная на рис. 8.1, применение специальной пружины 16, прижимающей якорь к призме, позволяют обеспечить износостойкость узла вращения у контакторов КПВ-600 до 20-10° при допустимом числе включений 1200 в час. По мере износа зазор между скобой якоря 18 и призмой 19 автоматически выбирается под воздействием пружины 16. Подвижная система контактора должна быть уравновешена относительно оси вращения. В контакторе серии КПВ-600 якорь электромагнита уравновешивается деталями, несущими подвижный контакт и воспринимающими воздействие возвратной пружины. Катушка электромагнита наматывается на тонкостенную изолированную стальную гильзу, которая обеспечивает достаточную жесткость и улучшает тепловой контакт катушки с сердечником. Последнее способствует снижению температуры катушки и уменьшению габаритов контактора. При включении электромагнита преодолеваются усилия возвратной и контактной пружин. Тяговая характеристика электромагнита должна во всех точках идти выше характеристики этих пружин при минимально допустимом напряжении на катушке (0,85 % UR0VL) и нагретом се состоянии. Включение должно происходить при все время нарастающей скорости движения якоря. Скорость якоря не должна снижаться и в момент замыкания главных контактов. Характеристика противодействующих усилий, приведенных к якорю электромагнита, для контактора КПВ-600 приведена на рис. 8.3, где

Источник