Меню

Активная мощность трехфазного электрического тока

Мощность трехфазной сети

В цепи постоянного тока мощность определяется довольно просто – это произведение тока и напряжения. Они не изменяются во времени и есть постоянной величиной, соответственно и мощность является постоянной, то есть система уравновешена.

С сетями переменного напряжения все гораздо сложнее. Они бывают однофазные, двухфазные, трехфазные и т.д. Наибольшее распространение получили однофазные и трехфазные сети в силу своего удобства и наименьших затрат.

Рассмотрим трехфазную систему питания

Такие цепи, могут соединяться в звезду или в треугольник. Для удобства чтение схем и во избежание ошибок фазы принято обозначать U, V, W или А, В, С.

Схема соединения звезда:

Документ1 Схема соединения фаз в звезду

Для соединения звездой суммарное напряжение в точке N равно нулю. Мощность трехфазного тока в данном случае тоже будет постоянной величиной, в отличии от однофазного. Это значит что трехфазная система уравновешена, в отличии от однофазной, то есть мощность трехфазной сети постоянна. Мгновенно значение полной трехфазной мощности будет равно:

1В данном типе соединения присутствуют два вида напряжения – фазное и линейное. Фазное – это напряжение между фазой и нулевой точкой N:

Документ2 Фазное напряжение в цепи

Линейное – между фазами:

Линейное напряжение Линейное напряжение

Поэтому полная мощность трехфазной сети для такого типа соединения будет равна:

Но поскольку линейное и фазное напряжение отличаются между собой в , но считается сумма фазовых мощностей. При расчете трехфазных цепей такого типа принято пользоваться формулой:

Мощность трехфазной сети при соединении в звезду и расчет при фазном напряженииСоответственно для активной:

Схема соединения в треугольник

Схема соединения обмоток в треугольник

Схема соединения обмоток в треугольник

Как видим при таком виде соединения, фазное и линейное напряжение равны, из чего следует, что мощность для соединения в треугольник равна:

Мощность трехфазной сети при соединении в треугольник

Измерение мощности

Измерение активной мощности в сетях производится с помощью ваттметра

Цифровой ваттметр Цифровой ваттметр Аналоговый ваттметр Аналоговый ваттметр

В зависимости от схемы соединения нагрузки и его характера (симметричная или несимметричная) схемы подключения приборов могут разниться. Рассмотрим случай с симметричной нагрузкой:

Документ5 Схема включения ваттметра при симметричной нагрузке

Здесь измерение проводится всего лишь в одной фазе и далее согласно формуле умножается на три. Этот способ позволяет сэкономить на приборах и уменьшить габариты измерительной установки. Применяется, когда не нужна большая точность измерения в каждой фазе.

Измерение при несимметричной нагрузке:

Документ6 Схема включения ваттметра при несимметричной нагрузке

Этот способ более точный, так как позволяет измерить мощность каждой фазы, но это требует трех приборов, больших габаритных размеров установки и обработки показаний с трех приборов.

Измерении в цепи без нулевого проводника:

Документ7 Схема включения ваттметра при отсутствии нулевого провода

Эта схема требует двух приборов. Этот способ основывается на первом законе Кирхгофа

IA+IB+IC=0. Из этого следует, что сумма показаний двух ваттметров равна трехфазной мощности этой цепи. Ниже показана векторная диаграмма для данного случая:

DL

Векторная диаграмма включения двух ваттметров при различных видах нагрузки

Мы можем сделать вывод, что показания приборов зависят не только от величины, но еще и от характера нагрузки.

Из диаграммы следует, что мы можем определить показание приборов аналитически:

Источник

Особенности трехфазной сети

Время на чтение:

В подавляющем большинстве случаев в домах и квартирах используется трехфазная сеть. Однако часто применяются приборы, которым необходимо однофазное питание. Чтобы лучше разбираться в особенностях использования трехфазной сети, нужно понимать, как она работает. В статье подробно рассмотрено, как правильно определить ее мощность и каким образом это можно использовать.

Что такое трехфазная сеть в электричестве

Многофазная электрическая сеть переменного тока была создана благодаря американскому ученому Н. Тесле. В России ученый М. Доливо-Добровольский разработал и содействовал повсеместному внедрению трехфазной электросети.

Соединение источника и потребителей

Подаются три фазы переменного тока, которые равны по амплитуде и сдвинуты друг относительно друга на 120°. Фазы могут быть соединены между собой несколькими способами. Самыми распространенными из них являются «звезда» и «треугольник».

В первом случае у них имеется один общий провод. При таком варианте использования появляется возможность подавать линейное или фазовое напряжение. В квартире первое равно 380 В, второе — 220 В. Общий провод обычно соединен с землей, хотя существуют схемы подключения, в которых это не так.

К сведению! При подключении «треугольником» каждый выход фазы соединен с одним выходом другой фазы.

Свойства трехфазной сети

Использование трехфазного электропитания завоевало широкую популярность по следующим причинам:

  • таким способом минимизируются потери при передаче электроэнергии на большие расстояния;
  • трехфазные схемы требуют для реализации меньшего количества деталей и материалов по сравнению с однофазными;
  • есть возможность обеспечить в сети питание 380 В или 220 В.
Читайте также:  Токи частота которых 50 10000 гц называют токами

Обратите внимание! Трехфазное напряжение часто используется для питания асинхронных двигателей, некоторых теплонагревательных приборов, для работы мощных устройств.

Какая сила тока трехфазной сети

На практике часто мощность электроприбора является известной величиной. Поскольку в большинстве случаев для питания используется напряжение 220 В, то имеются все необходимые данные для расчета силы тока. Эта величина важна, чтобы сравнить ее с предельно допустимой для используемых проводов, розеток и удлинителей.

Важно! Слишком сильный ток может вызвать перегорание предохранителей или порчу используемого удлинителя.

Трехфазная система с нейтралью

Для определения силы тока можно воспользоваться формулой мощности: P = кв. корень(3) * U(l) * I(l) * cos(«фи«).

Здесь можно использовать известные данные:

  • P — мощность электроприбора, известная из его инструкции по эксплуатации;
  • U(l). В большинстве случаев речь идет о напряжении 220 В (для устройств с трехфазным питанием эта величина будет равна 380 В).

Значение и формула для cos («фи») обычно точно неизвестны. Их берут из технического паспорта прибора или обращаются за этой информацией к справочникам. Как правило, для определенных типов приборов такая величина известна. Например, она близка к 1 у нагревательных приборов, а у электродвигателей равна 0,7-0,9.

Таким образом на основе приведенной формулы можно посчитать силу тока на основании известных данных.

Прибор для измерения мощности — ваттметр

Какая стандартная потребляемая ее мощность

Чтобы рассчитать электрическую мощность, потребляемую квартирой или частным домом, нужно учесть потребление энергии всеми используемыми электроприборами. Это удобно делать в два этапа:

  1. Рассмотреть все те приборы, которым необходимо питание, использующее три фазы.
  2. Просуммировать потребляемую мощность однофазных устройств.

Искомые значения можно взять либо из техпаспорта электроприбора, либо из технического справочника. При необходимости эту величину можно рассчитывать на основе сделанных измерений. В реальной жизни устройства практически никогда не включаются одновременно.

Обратите внимание! Знание предельной величины потребляемой энергии позволит правильно организовать электроснабжение дома или квартиры.

На основе полученных данных можно, используя формулы мощности, вычислить, какова предельно допустимая сила тока в трехфазной сети, которую должна выдерживать электропроводка. Это позволит правильно подобрать предохранители и используемые во внутренней электросети провода.

Принцип действия трехфазного генератора

Как правильно рассчитать мощность трехфазной сети

Если трехфазная сеть использует соединение «треугольник», то потребители могут получать однофазное напряжение фазное или линейное. При этом оно будет иметь разную величину: первое будет меньше второго примерно в 1,71 раза (точное значение равно квадратному корню из 3). Силу тока в первом и втором случаях легко рассчитать — будет одинаковой.

К сведению! Если используется вариант соединения «треугольником», то линейное и фазовое напряжения будут равны. Однако фазовый ток будет меньше линейного в 1,71 раза.

Характеристики трехфазных цепей

Далее рассказано, как рассчитать мощность трехфазной сети. Для этого необходимо просуммировать мощности всех трех фаз. В качестве примера соединение «треугольником». В этом случае для каждой фазы эта характеристика определяется по следующей формуле: P1 = U(f) * I(f) * cos(«фи«).

В формуле расчета мощности трехфазной сети использованы такие обозначения:

  • P1 — мощность каждой из трех фаз;
  • U (f) — фазовое напряжение;
  • I (f) — фазовая сила тока;
  • «фи» — угол, определяемый соотношением активной и реактивной мощности.

Мощность, выделяющаяся на нагрузке, включает в себя активную и реактивную компоненты. Между ними существует сдвиг фаз «фи». Его смысл состоит в том, что при помощи указанного коэффициента определяется доля реактивной мощности в ее суммарной величине.

Чтобы определить мощность трехфазной сети, нужно просуммировать мощность всех трех фаз. Формула выглядит следующим образом: P = 3 * (U (f) * I(f) * cos(«фи»)). P означает искомую величину. Эту величину при расчете можно определить с помощью линейных величин силы тока и напряжения. Поскольку U(f) = U(l) / кв. корень(3), а I(f) = I(l), то мощность можно будет вычислять таким образом.

P = 3 * (U(f) * I(f) * cos(«фи»)) = 3 * (U(l) * I(l) * cos(«фи») / кв. корень(3)) = кв. корень(3) * U(l) * I(l) * cos(«фи«).

При подключении с помощью схемы «треугольник» вычисления выполняются аналогичным образом. При расчете активной мощности в трехфазной сети нужно учитывать, что фазовое и линейное напряжения будут равны, но фазовая сила тока будет в кв. корень (3) меньше линейной.

Обратите внимание! После выполнения преобразований формула мощности трехфазного тока будет такой же, как и для соединения «звездой».

Использование трехфазных сетей имеет свои важные преимущества и является широко распространенным. Чтобы грамотно их эксплуатировать, необходимо знать характеристики и формулы для расчета напряжения.

Читайте также:  Понижающий трансформатор постоянного тока своими руками

Источник

Активная мощность цепи переменного тока

Мощностные характеристики установки или сети являются основными для большинства известных электрических приборов. Активная мощность (проходящая, потребляема) характеризует часть полной мощности, которая передается за определенный период частоты переменного тока.

Определение

Активная и реактивная мощность может быть только у переменного тока, т. к. характеристики сети (силы тока и напряжения) у постоянного всегда равны. Единица измерений активной мощности Ватт, в то время, как реактивной – реактивный вольтампер и килоВАР (кВАР). Стоит отметить, что как полная, так и активная характеристики могут измеряться в кВт и кВА, это зависит от параметров конкретного устройства и сети. В промышленных цепях чаще всего измеряется в килоВаттах.

Соотношение энергий

Соотношение энергий

Электротехника используется активную составляющую в качестве измерения передачи энергии отдельными электрическими приборами. Рассмотрим, сколько мощности потребляют некоторые из них:

Прибор Мощность бытовых приборов, Вт/час
Зарядное устройство 2
Люминесцентная лампа ДРЛ От 50
Акустическая система 30
Электрический чайник 1500
Стиральной машины 2500
Полуавтоматический инвертор 3500
Мойка высокого давления 3500

Исходя из всего, сказанного выше, активная мощность – это положительная характеристика конкретной электрической цепи, которая является одним из основных параметров для выбора электрических приборов и контроля расхода электричества.

Генерация активной составляющей

Генерация активной составляющей

Обозначение реактивной составляющей:

Это номинальная величина, которая характеризует нагрузки в электрических устройствах при помощи колебаний ЭМП и потери при работе прибора. Иными словами, передаваемая энергия переходит на определенный реактивный преобразователь (это конденсатор, диодный мост и т. д.) и проявляется только в том случае, если система включает в себя эту составляющую.

Расчет

Для выяснения показателя активной мощности, необходимо знать полную мощность, для её вычисления используется следующая формула:

S = U \ I, где U – это напряжение сети, а I – это сила тока сети.

Этот же расчет выполняется при вычислении уровня передачи энергии катушки при симметричном подключении. Схема имеет следующий вид:

Схема симметричной нагрузки

Схема симметричной нагрузки

Расчет активной мощности учитывает угол сдвига фаз или коэффициент (cos φ), тогда:

Очень важным фактором является то, что эта электрическая величина может быть как положительной, так и отрицательной. Это зависит от того, какие характеристики имеет cos φ. Если у синусоидального тока угол сдвига фаз находится в пределах от 0 до 90 градусов, то активная мощность положительная, если от 0 до -90 – то отрицательная. Правило действительно только для синхронного (синусоидального) тока (применяемого для работы асинхронного двигателя, станочного оборудования).

Также одной из характерных особенностей этой характеристики является то, что в трехфазной цепи (к примеру, трансформатора или генератора), на выходе активный показатель полностью вырабатывается.

Расчет трехфазной сети

Расчет трехфазной сети

Максимальная и активная обозначается P, реактивная мощность – Q.

Из-за того, что реактивная обуславливается движением и энергией магнитного поля, её формула (с учетом угла сдвига фаз) имеет следующий вид:

Для несинусоидального тока очень сложно подобрать стандартные параметры сети. Для определения нужных характеристик с целью вычисления активной и реактивной мощности используются различные измерительные устройства. Это вольтметр, амперметр и прочие. Исходя от уровня нагрузки, подбирается нужная формула.

Из-за того, что реактивная и активная характеристики связаны с полной мощностью, их соотношение (баланс) имеет следующий вид:

S = √P 2 + Q 2 , и все это равняется U*I .

Но если ток проходит непосредственно по реактивному сопротивлению. То потерь в сети не возникает. Это обуславливает индуктивная индуктивная составляющая – С и сопротивление – L. Эти показатели рассчитываются по формулам:

Сопротивление индуктивности: xL = ωL = 2πfL,

Сопротивление емкости: хc = 1/(ωC) = 1/(2πfC).

Для определения соотношения активной и реактивной мощности используется специальный коэффициент. Это очень важный параметр, по которому можно определить, какая часть энергии используется не по назначению или «теряется» при работе устройства.

При наличии в сети активной реактивной составляющей обязательно должен рассчитываться коэффициент мощности. Эта величина не имеет единиц измерения, она характеризует конкретного потребителя тока, если электрическая система содержит реактивные элементы. С помощью этого показателя становится понятным, в каком направлении и как сдвигается энергия относительно напряжения сети. Для этого понадобится диаграмма треугольников напряжений:

Диаграмма треугольников напряженийДиаграмма треугольников напряжений

К примеру, при наличии конденсатора формула коэффициента имеет следующий вид:

Для получения максимально точных результатов рекомендуется не округлять полученные данные.

Компенсация

Учитывая, что при резонансе токов реактивная мощность равняется 0:

Q = QL — QC = ULI – UCI

Читайте также:  Таблица токов трехфазных двигателей от мощностей

Для того чтобы улучшить качество работы определенного устройства применяются специальные приборы, минимизирующие воздействие потерь на сеть. В частности, это ИБП. В данном приборе не нуждаются электрические потребители со встроенным аккумулятором (к примеру, ноутбуки или портативные устройства), но для большинства остальных источник бесперебойного питания является необходимым.

При установке такого источника можно не только установить негативные последствия потерь, но и уменьшить траты на оплату электричества. Специалисты доказали, что в среднем, ИБП поможет экономить от 20 % до 50 %. Почему это происходит:

  1. Значительно уменьшается нагрузка силовых трансформаторов;
  2. Провода меньше нагреваются, это не только положительно влияет на их работу, но и повышает безопасность;
  3. У сигнальных и радиоустройств уменьшаются помехи;
  4. На порядок уменьшаются гармоники в электрической сети.

В некоторых случаях специалисты используют не полноценные ИБП, а специальные компенсирующие конденсаторы. Они подходят для бытового использования, доступны и продаются в каждом электротехническом магазине. Для расчета планируемой и полученной экономии можно использовать все вышеперечисленные формулы.

Источник



Мощность трехфазной сети: активная, реактивная, полная

Значения общей активной и общей реактивной мощностей трехфазной цепи равны соответственно суммам активных и реактивных мощностей для каждой из трех фаз A, B и C. Это утверждение иллюстрируют следующие формулы:

Мощность трехфазной сети

здесь Ua, Ub, Uc, Ia, Ib, Ic – значения фазных напряжений и токов, а φ — сдвиг фаз.

Когда нагрузка является симметричной, то есть в условиях когда активные и реактивные мощности каждой из фаз равны между собой, для нахождения общей мощности многофазной цепи достаточно умножить значение фазной мощности на количество задействованных фаз. Полная мощность определяется исходя из полученных значений активной и реактивной ее составляющих:

Полная мощность трехфазной сети

В приведенных формулах можно выразить фазные значения величин через линейные их значения, которые для схем соединения потребителей звездой или треугольником будут отличаться, однако формулы для мощности в итоге окажутся одинаковыми:

Мощность для звезды и треугольника

Из приведенных выражений следует, что вне зависимости от схемы соединения приемников электрической энергии, треугольник ли это или звезда, если нагрузка симметрична, то формулы для нахождения мощности будут иметь одинаковый вид, как для треугольника, так и для звезды:

Определение мощности при симметричной нагрузке

В данных формулах указаны линейные значения величин напряжения и тока, и они записаны без индексов. Именно такая запись, без индексов, встречается обычно, то есть если нет индексов, то имеются ввиду линейные значения.

Для проведения измерений применительно к активной мощности в электрической цепи, используют специальный измерительный прибор, который называется ваттметром. Его показания определяются в соответствии с формулой:

Расчет мощности при использовании ваттметра

в приведенной формуле Uw и Iw – векторы приложенного к нагрузке напряжения и протекающего через нее тока.

Характер активной нагрузки и схема соединения фаз могут быть разными, поэтому в зависимости от конкретных обстоятельств и схемы включения ваттметров будут различными.

Для симметрично нагруженных трехфазных цепей, с целью ориентировочного измерения общей активной мощности, если не требуется высокая точность, достаточно одного ваттметра, включенного лишь в одну из фаз. Затем, для получения значения активной мощности полной цепи, остается умножить показания ваттметра на количество фаз:

Для четырехпроводной цепи с нулевым проводом, чтобы точно измерить активную мощность, необходимы три ваттметра, с каждого из которых снимаются показания, и затем суммируются для получения значения общей мощности цепи:

Если нулевой провод в трехфазной цепи отсутствует, то для измерения общей мощности достаточно двух ваттметров, даже если нагрузка несимметрична.

В отсутствие нулевого провода, токи фаз связаны друг с другом в соответствии с первым законом Кирхгофа:

Тогда сумма показаний пары ваттметров будет равна:

Сумма показаний пары ваттметров

Так, если сложить показания пары ваттметров, то получится общая активная мощность в исследуемой трехфазной цепи, причем показания ваттметров будут зависеть как от величины нагрузки, так и от ее характера.

Векторная диаграмма токов и напряжений

Взглянув на векторную диаграмму токов и напряжений применительно к симметричной нагрузке, можно придти к выводу, что показания ваттметров определяются по следующим формулам:

Определение показаний ваттметров

Проанализировав эти выражения, можно понять, что при чисто активной нагрузке, когда φ = 0, показания двух ваттметров окажутся равны между собой, то есть W1 = W2.

При активно-индуктивном характере нагрузки, когда 0 ≤ φ ≤ 90°, показания ваттметра 1 окажутся меньше чем у ваттметра 2, то есть W1 60° показания ваттметра 1 будут отрицательными, то есть W1

При активно-емкостном характере нагрузки, когда 0 ≥ φ≥ -90°, показания ваттметра 2 будут меньше чем ваттметра 1, то есть W1 > W2. При φ

Источник